diff --git a/ruoyi-framework/src/main/java/com/ruoyi/framework/config/SecurityConfig.java b/ruoyi-framework/src/main/java/com/ruoyi/framework/config/SecurityConfig.java index 9d288e65..046648e7 100644 --- a/ruoyi-framework/src/main/java/com/ruoyi/framework/config/SecurityConfig.java +++ b/ruoyi-framework/src/main/java/com/ruoyi/framework/config/SecurityConfig.java @@ -69,7 +69,7 @@ public class SecurityConfig extends WebSecurityConfigurerAdapter { @Override public boolean matches(HttpServletRequest request) { // 获取请求的IP - String requestIP = request.getRemoteAddr(); + String requestIP = request.getHeader("X-Forwarded-For"); // 将配置文件中的IP字符串分割为数组 String[] ips = allowedIPs.split(","); // 检查请求的IP是否在允许的IP数组中 diff --git a/zc-business/pom.xml b/zc-business/pom.xml index c0017e0b..6b870a73 100644 --- a/zc-business/pom.xml +++ b/zc-business/pom.xml @@ -47,6 +47,31 @@ com.ruoyi ruoyi-system + + + org.apache.poi + poi-ooxml + 4.1.2 + + + org.apache.poi + poi-ooxml-schemas + 4.1.2 + + + org.apache.poi + poi + 4.1.2 + + + + + com.deepoove + poi-tl + 1.9.1 + + com.zc 1.0.0 diff --git a/zc-business/src/main/java/com/zc/business/constant/RedisKeyConstants.java b/zc-business/src/main/java/com/zc/business/constant/RedisKeyConstants.java index abeba97b..003a8ab5 100644 --- a/zc-business/src/main/java/com/zc/business/constant/RedisKeyConstants.java +++ b/zc-business/src/main/java/com/zc/business/constant/RedisKeyConstants.java @@ -10,4 +10,23 @@ public class RedisKeyConstants * 设备 */ public static final String DC_DEVICES = "dc:devices"; + + /** + * 路段 + */ + public static final String DC_ROAD_SECTION = "dc:roadSection"; + + /** + * 设备实时交通统计 + */ + private static final String DC_DEVICES_TRAFFIC_STATISTICS = "dc:devicesTrafficStatistics"; + + /** + * 获取实时交通统计key + * @param direction 方向 + * @return key + */ + public static String getDcDevicesTrafficStatisticsKey(Byte direction) { + return DC_DEVICES_TRAFFIC_STATISTICS + ":" + direction; + } } diff --git a/zc-business/src/main/java/com/zc/business/constant/StakeMarkConstant.java b/zc-business/src/main/java/com/zc/business/constant/StakeMarkConstant.java new file mode 100644 index 00000000..45d5e654 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/constant/StakeMarkConstant.java @@ -0,0 +1,27 @@ +package com.zc.business.constant; + +/** + * StakeMarkConstant类,用于定义一些桩号常量。 + * @author xiepufeng + */ +public class StakeMarkConstant { + + + // 定义最大桩号常量 + public static final int MAX_STAKE_MARK = 208979; + + // 定义最小桩号常量 + public static final int MIN_STAKE_MARK = 54394; + + // 定义毫米波雷达最大测量间隔 + public static final int MAX_INTERVAL_MILLIMETER_WAVE_RADAR = 12030; + + /** + * 计算道路长度 + * @return 道路长度(单位:米) + */ + public static int calculateRoadLength() { + return MAX_STAKE_MARK - MIN_STAKE_MARK; + } + +} diff --git a/zc-business/src/main/java/com/zc/business/constant/StatisticalRecoveryOffsetTime.java b/zc-business/src/main/java/com/zc/business/constant/StatisticalRecoveryOffsetTime.java deleted file mode 100644 index 78117d8d..00000000 --- a/zc-business/src/main/java/com/zc/business/constant/StatisticalRecoveryOffsetTime.java +++ /dev/null @@ -1,14 +0,0 @@ -package com.zc.business.constant; - -/** - * 统计恢复偏移时间类 - * 用于定义与交通数据恢复相关的偏移时间常量。 - * - * @author xiepufeng - */ -public class StatisticalRecoveryOffsetTime { - - // 定义交通数据段偏移的天数常量,表示偏移-10天 - public static final int TRAFFIC_SECTION_DATA_OFFSET_DAY = -10; -} - diff --git a/zc-business/src/main/java/com/zc/business/controller/DcTrafficStatisticsController.java b/zc-business/src/main/java/com/zc/business/controller/DcTrafficStatisticsController.java new file mode 100644 index 00000000..828e8712 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/controller/DcTrafficStatisticsController.java @@ -0,0 +1,60 @@ +package com.zc.business.controller; + +import com.ruoyi.common.core.domain.AjaxResult; +import com.zc.business.domain.DcTrafficMetricsData; +import com.zc.business.request.DcTrafficMetricsDataRequest; +import com.zc.business.service.DcTrafficStatisticsService; +import io.swagger.annotations.Api; +import io.swagger.annotations.ApiOperation; +import io.swagger.annotations.ApiParam; +import org.springframework.beans.factory.annotation.Autowired; +import org.springframework.http.MediaType; +import org.springframework.web.bind.annotation.*; + +import java.util.List; + +/** + * 交通数据统计 + * + * @author xiepufeng + */ +@Api(tags = "交通数据统计") +@RestController +@RequestMapping("/business/traffic-statistics") +public class DcTrafficStatisticsController { + + @Autowired + private DcTrafficStatisticsService dcTrafficStatisticsService; + + + /** + * 获取当前交通特征指数 + * + * @param request 请求参数,封装了获取交通指标所需的数据和条件 + * @return 返回当前交通特征指数的数据结果,使用AjaxResult包装 + */ + @ApiOperation("获取当前交通特征指数") + @GetMapping("/current/metrics") + public AjaxResult currentTrafficMetrics(DcTrafficMetricsDataRequest request){ + // 调用服务层方法,获取当前交通指标数据 + DcTrafficMetricsData dcTrafficMetricsData = dcTrafficStatisticsService.currentTrafficMetrics(request); + // 将获取到的交通指标数据封装为成功的结果并返回 + return AjaxResult.success(dcTrafficMetricsData); + } + + /** + * 获取历史交通特征指数 + * + * @param request 请求参数,包含需要查询的历史交通特征指数的详细信息 + * @return 返回一个AjaxResult对象,其中包含了查询结果的成功状态和历史交通特征指数数据列表 + */ + @ApiOperation("获取历史交通特征指数") + @GetMapping("/history/metrics") + public AjaxResult historyTrafficMetrics(DcTrafficMetricsDataRequest request){ + // 调用服务层方法,查询历史交通特征指数数据 + List dcTrafficMetricsDataList = dcTrafficStatisticsService.historyTrafficMetrics(request); + // 将查询结果封装成成功响应并返回 + return AjaxResult.success(dcTrafficMetricsDataList); + } + +} diff --git a/zc-business/src/main/java/com/zc/business/controller/VideoController.java b/zc-business/src/main/java/com/zc/business/controller/VideoController.java index 86d3a73f..2021f8a4 100644 --- a/zc-business/src/main/java/com/zc/business/controller/VideoController.java +++ b/zc-business/src/main/java/com/zc/business/controller/VideoController.java @@ -9,8 +9,8 @@ import com.ruoyi.common.core.domain.AjaxResult; import com.ruoyi.common.core.redis.RedisCache; import com.zc.business.constant.DeviceTypeConstants; import com.zc.business.domain.DcDevice; -import com.zc.business.enums.CameraDirection; -import com.zc.business.enums.LaneDirection; +import com.zc.business.enums.CameraDirectionEnum; +import com.zc.business.enums.LaneDirectionEnum; import com.zc.business.service.IDcDeviceService; import com.zc.business.service.IMiddleDatabaseService; import com.zc.common.core.httpclient.OkHttp; @@ -26,7 +26,6 @@ import org.springframework.web.bind.annotation.PatchMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; -import javax.annotation.PostConstruct; import javax.annotation.Resource; import java.io.IOException; import java.util.*; @@ -121,12 +120,12 @@ public class VideoController extends BaseController { String pileNum = cameraInfo.getString("pileNum"); // 方向 Integer camOrientation = cameraInfo.getInteger("camOrientation"); - LaneDirection laneDirection = CameraDirection.fromCode(camOrientation).toLaneDirection(); + LaneDirectionEnum laneDirectionEnum = CameraDirectionEnum.fromCode(camOrientation).toLaneDirection(); // 是否有云台控制 0 有(球机) 1 ⽆(枪机) String ptzCtrl = cameraInfo.getString("ptzCtrl"); - String key = pileNum + "|" + laneDirection.getValue() + "|" + ptzCtrl; + String key = pileNum + "|" + laneDirectionEnum.getValue() + "|" + ptzCtrl; if (cameraMap.containsKey(key)) { DcDevice dcDevice = cameraMap.get(key); diff --git a/zc-business/src/main/java/com/zc/business/controller/WordController.java b/zc-business/src/main/java/com/zc/business/controller/WordController.java new file mode 100644 index 00000000..b2879914 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/controller/WordController.java @@ -0,0 +1,1050 @@ +package com.zc.business.controller; + +import com.ruoyi.common.config.RuoYiConfig; +import com.ruoyi.common.core.domain.AjaxResult; +import com.zc.business.mapper.DcTrafficIncidentsMapper; +import com.zc.business.utils.PoiUtil; +import io.swagger.annotations.Api; +import io.swagger.annotations.ApiOperation; +import org.apache.poi.xssf.usermodel.XSSFSheet; +import org.apache.poi.xssf.usermodel.XSSFWorkbook; +import org.apache.poi.xwpf.usermodel.*; +import org.openxmlformats.schemas.wordprocessingml.x2006.main.*; +import org.springframework.beans.factory.annotation.Autowired; +import org.springframework.web.bind.annotation.PostMapping; +import org.springframework.web.bind.annotation.RequestMapping; +import org.springframework.web.bind.annotation.RestController; + +import javax.servlet.http.HttpServletResponse; +import java.io.InputStream; +import java.math.BigInteger; +import java.text.SimpleDateFormat; +import java.time.OffsetDateTime; +import java.time.format.DateTimeFormatter; +import java.util.*; + +import static com.zc.business.utils.PoiUtil.*; + +/** + * @Description 通行情况快报 + * + * @author liuwenge + * @date 2024/3/26 11:13 + */ +@Api(tags = "通行情况快报") +@RestController +@RequestMapping("/business/word") +public class WordController { + + @Autowired + private WeatherForecastController weatherForecastController; + @Autowired + private DcTrafficIncidentsMapper dcTrafficIncidentsMapper; + + + @PostMapping("/trafficSituationReport") + @ApiOperation("导出通行情况快报") + public void trafficSituationReport(HttpServletResponse response){ + try { + SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd"); + String date = df.format(new Date()); + String outputPath = RuoYiConfig.getDownloadPath() +"/济菏高速公路通行情况快报" + date + ".docx"; + // 读取Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/wordTemplate.docx"); + XWPFDocument newDoc = new XWPFDocument(inputStream); + + // 创建并插入带超链接的目录 + insertTOC(newDoc); + + + //换页 + XWPFParagraph breakPara = newDoc.createParagraph(); + breakPara.setAlignment(ParagraphAlignment.CENTER); + CTP ctP = breakPara.getCTP(); + CTR ctr = ctP.addNewR(); + CTBr ctBr = ctr.addNewBr(); + ctBr.setType(STBrType.PAGE); + + + + PoiUtil.createHeading1(newDoc,"总体情况"); + /** 天气情况统计 */ + weather(newDoc); + /** 交通管制情况 */ + trafficControl(newDoc); + /** 交通事故 */ + trafficAccident(newDoc); + /** 出入口车流量 */ + trafficFlow(newDoc); + + + + PoiUtil.createHeading1(newDoc,"收费站运行情况"); + /** 封闭原因统计 */ + trafficControlReasons(newDoc); + /** 封闭数量统计 */ + closedQuantity(newDoc); + PoiUtil.createHeading1(newDoc,"交通事故情况"); + /** 交通事故统计 */ + accidentType(newDoc); + + + PoiUtil.createHeading1(newDoc,"拥堵情况"); + /** 拥堵地点 */ + congestionLocation(newDoc); + /** 拥堵时长 */ + congestionDuration(newDoc); + /** 拥堵长度 */ + congestionMileage(newDoc); + + + + // 保存新生成的Word文件 +// FileOutputStream out = new FileOutputStream(outputPath); +// out.close(); + + // 不保存直接返回文件流 + newDoc.write(response.getOutputStream()); + + + // 关闭文档 + newDoc.close(); + System.out.println("生成通行情况快报成功!"); + } catch (Exception e) { + e.printStackTrace(); + } + } + + /** + * @Description 天气情况统计 + * + * @author liuwenge + * @date 2024/3/26 15:39 + * @param + * @return void + */ + + public void weather(XWPFDocument doc) { + + PoiUtil.createHeading2(doc,"天气情况统计"); + + XWPFTable table = doc.createTable(9, 25); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + AjaxResult ajaxResult = weatherForecastController.hourlyWeather(); + if (ajaxResult.get("code").equals(200)) { + Map>> data = (Map>>) ajaxResult.get("data"); + data.keySet().forEach(key ->{ + if ("hourlyWeather1".equals(key)){ + setTableFonts(table.getRow(1).getCell(0), "长清区"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + OffsetDateTime offsetDateTime = OffsetDateTime.parse(weatherList.get(i).get("fxTime").toString()); + setTableFonts(table.getRow(0).getCell(i+1),offsetDateTime.format(DateTimeFormatter.ofPattern("dd日HH时"))); + setTableFonts(table.getRow(1).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } else if ("hourlyWeather2".equals(key)){ + setTableFonts(table.getRow(2).getCell(0), "平阴县"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + setTableFonts(table.getRow(2).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } else if ("hourlyWeather3".equals(key)){ + setTableFonts(table.getRow(3).getCell(0), "东平县"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + setTableFonts(table.getRow(3).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } else if ("hourlyWeather4".equals(key)){ + setTableFonts(table.getRow(4).getCell(0), "汶上县"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + setTableFonts(table.getRow(4).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } else if ("hourlyWeather5".equals(key)){ + setTableFonts(table.getRow(5).getCell(0), "梁山县"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + setTableFonts(table.getRow(5).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } else if ("hourlyWeather6".equals(key)){ + setTableFonts(table.getRow(6).getCell(0), "嘉祥县"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + setTableFonts(table.getRow(6).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } else if ("hourlyWeather7".equals(key)){ + setTableFonts(table.getRow(7).getCell(0), "巨野县"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + setTableFonts(table.getRow(7).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } else if ("hourlyWeather8".equals(key)){ + setTableFonts(table.getRow(8).getCell(0), "郓城县"); + List> weatherList = data.get(key); + for (int i = 0; i < weatherList.size(); i++) { + setTableFonts(table.getRow(8).getCell(i+1), weatherList.get(i).get("text").toString()); + } + } + }); + } + + //换行 + createLineBreak(doc); + + + } + + + /** + * @Description 交通管制情况 + * + * @author liuwenge + * @date 2024/3/26 17:36 + * @param doc + * @return void + */ + public void trafficControl(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "交通管制情况"); + + + SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); + + + Calendar calendar = Calendar.getInstance(); + //将天至1 + calendar.set(Calendar.DAY_OF_MONTH, 1); + //将小时至0 + calendar.set(Calendar.HOUR_OF_DAY, 0); + //将分钟至0 + calendar.set(Calendar.MINUTE, 0); + //将秒至0 + calendar.set(Calendar.SECOND,0); + //将毫秒至0 + calendar.set(Calendar.MILLISECOND, 0); + //获得当前月第一天 + Date date = calendar.getTime(); + String startDate = dateFormat.format(date); + String endDate = dateFormat.format(new Date()); + + + List> tollStationAnalysisList = dcTrafficIncidentsMapper.selectTollStationAnalysisByFacility(null,startDate,endDate); + if (tollStationAnalysisList != null && tollStationAnalysisList.size() > 0) { + + XWPFTable table = doc.createTable(11, 4); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(1), "封闭"); + setTableFonts(table.getRow(0).getCell(2), "限行"); + setTableFonts(table.getRow(0).getCell(3), "间隔放行"); + + //excel + for (int i = 0; i < tollStationAnalysisList.size(); i++){ + setTableFonts(table.getRow(i+1).getCell(0), tollStationAnalysisList.get(i).get("facilityName").toString()); + setTableFonts(table.getRow(i+1).getCell(1), tollStationAnalysisList.get(i).get("facilityClose").toString()); + setTableFonts(table.getRow(i+1).getCell(2), tollStationAnalysisList.get(i).get("facilityRestriction").toString()); + setTableFonts(table.getRow(i+1).getCell(3), tollStationAnalysisList.get(i).get("facilityInterval").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(0); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"封闭","限行","间隔放行"}; + //分类信息 + for (int i = 0; i < tollStationAnalysisList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(tollStationAnalysisList.get(i).get("facilityName").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(tollStationAnalysisList.get(i).get("facilityClose").toString())); + sheet.getRow(i+1).getCell(2).setCellValue(Long.parseLong(tollStationAnalysisList.get(i).get("facilityRestriction").toString())); + sheet.getRow(i+1).getCell(3).setCellValue(Long.parseLong(tollStationAnalysisList.get(i).get("facilityInterval").toString())); + + } + PoiUtil.wordExportChar(chart, "交通管制情况", singleBarSeriesNames,sheet ); + + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + + } + + //换行 + createLineBreak(doc); + + + List> trafficControlAnalysisList = dcTrafficIncidentsMapper.selectTrafficControlAnalysis(startDate,endDate); + if (trafficControlAnalysisList != null && trafficControlAnalysisList.size() > 0) { + + XWPFTable table = doc.createTable(7, 4); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(1), "封闭"); + setTableFonts(table.getRow(0).getCell(2), "限行"); + setTableFonts(table.getRow(0).getCell(3), "间隔放行"); + + //excel + for (int i = 0; i < trafficControlAnalysisList.size(); i++){ + setTableFonts(table.getRow(i+1).getCell(0), trafficControlAnalysisList.get(i).get("controlCauseName").toString()); + setTableFonts(table.getRow(i+1).getCell(1), trafficControlAnalysisList.get(i).get("facilityClose").toString()); + setTableFonts(table.getRow(i+1).getCell(2), trafficControlAnalysisList.get(i).get("facilityRestriction").toString()); + setTableFonts(table.getRow(i+1).getCell(3), trafficControlAnalysisList.get(i).get("facilityInterval").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(0); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + //系列信息 + String[] singleBarSeriesNames = {"封闭","限行","间隔放行"}; + //分类信息 + for (int i = 0; i < trafficControlAnalysisList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(trafficControlAnalysisList.get(i).get("controlCauseName").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(trafficControlAnalysisList.get(i).get("facilityClose").toString())); + sheet.getRow(i+1).getCell(2).setCellValue(Long.parseLong(trafficControlAnalysisList.get(i).get("facilityRestriction").toString())); + sheet.getRow(i+1).getCell(3).setCellValue(Long.parseLong(trafficControlAnalysisList.get(i).get("facilityInterval").toString())); + } + for (int i = sheet.getLastRowNum(); i > trafficControlAnalysisList.size();i--){ + sheet.removeRow(sheet.getRow(i)); + } + + PoiUtil.wordExportChar(chart, "交通管制情况", singleBarSeriesNames,sheet ); + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + + } + + //换行 + createLineBreak(doc); + + } + + + /** + * @Description 交通事故 + * + * @author liuwenge + * @date 2024/3/27 20:06 + * @param doc + * @return void + */ + public void trafficAccident(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "交通事故"); + + + List> trafficAccidentList = dcTrafficIncidentsMapper.selectTrafficAccidentAnalysis(); + if (trafficAccidentList != null && trafficAccidentList.size() > 0) { + + XWPFTable table = doc.createTable(2, 4); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + + //表格插入总数 + setTableFonts(table.getRow(0).getCell(0), "事故数量"); + Long allNum = 0L; + for (Map map : trafficAccidentList) { + allNum += Long.parseLong(map.get("num").toString()); + } + setTableFonts(table.getRow(1).getCell(0), allNum.toString()); + + //excel + for (int i = 0; i < trafficAccidentList.size(); i++){ + setTableFonts(table.getRow(0).getCell(i+1), trafficAccidentList.get(i).get("eventStateLabel").toString()); + setTableFonts(table.getRow(1).getCell(i+1), trafficAccidentList.get(i).get("num").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(1); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + //系列信息 + String[] singleBarSeriesNames = {"数量"}; + //分类信息 + for (int i = 0; i < trafficAccidentList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(trafficAccidentList.get(i).get("eventStateLabel").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(trafficAccidentList.get(i).get("num").toString())); + + } + for (int i = sheet.getLastRowNum(); i > trafficAccidentList.size();i--){ + sheet.removeRow(sheet.getRow(i)); + } + PoiUtil.wordExportChar(chart, "交通事故", singleBarSeriesNames,sheet ); + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + + } + + //换行 + createLineBreak(doc); + + + + } + + + /** + * @Description 出入口车流量 + * + * @author liuwenge + * @date 2024/3/28 9:14 + * @param doc + * @return void + */ + public void trafficFlow(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "出入口车流量"); + + + List> trafficFlowList = new ArrayList<>(); + Map trafficFlow = new HashMap<>(); + trafficFlow.put("label","入口"); + trafficFlow.put("num","0"); + trafficFlowList.add(trafficFlow); + + trafficFlow = new HashMap<>(); + trafficFlow.put("label","出口"); + trafficFlow.put("num","0"); + trafficFlowList.add(trafficFlow); + + if (trafficFlowList != null && trafficFlowList.size() > 0) { + + XWPFTable table = doc.createTable(2, 3); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + + //表格插入总数 + setTableFonts(table.getRow(0).getCell(0), "合计"); + Long allNum = 0L; + for (Map map : trafficFlowList) { + allNum += Long.parseLong(map.get("num").toString()); + } + setTableFonts(table.getRow(1).getCell(0), allNum.toString()); + + //excel + for (int i = 0; i < trafficFlowList.size(); i++){ + setTableFonts(table.getRow(0).getCell(i+1), trafficFlowList.get(i).get("label").toString()); + setTableFonts(table.getRow(1).getCell(i+1), trafficFlowList.get(i).get("num").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(1); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"数量"}; + //分类信息 + for (int i = 0; i < trafficFlowList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(trafficFlowList.get(i).get("label").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(trafficFlowList.get(i).get("num").toString())); + + } + for (int i = sheet.getLastRowNum(); i > trafficFlowList.size();i--){ + sheet.removeRow(sheet.getRow(i)); + } + PoiUtil.wordExportChar(chart, "出入口车流量", singleBarSeriesNames,sheet ); + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + + } + + //换行 + createLineBreak(doc); + + + } + + + /** + * @Description 封闭原因统计 + * + * @author liuwenge + * @date 2024/3/28 11:29 + * @param doc + * @return void + */ + public void trafficControlReasons(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "封闭原因统计"); + + SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); + Calendar calendar = Calendar.getInstance(); + //将天至1 + calendar.set(Calendar.DAY_OF_MONTH, 1); + //将小时至0 + calendar.set(Calendar.HOUR_OF_DAY, 0); + //将分钟至0 + calendar.set(Calendar.MINUTE, 0); + //将秒至0 + calendar.set(Calendar.SECOND,0); + //将毫秒至0 + calendar.set(Calendar.MILLISECOND, 0); + //获得当前月第一天 + Date date = calendar.getTime(); + String startDate = dateFormat.format(date); + String endDate = dateFormat.format(new Date()); + + + //封闭 + List> closeList = dcTrafficIncidentsMapper.selectTrafficControlReasons("1",startDate,endDate); + //限行 + List> restrictionList = dcTrafficIncidentsMapper.selectTrafficControlReasons("2",startDate,endDate); + + + + if (closeList != null && closeList.size() > 0 && restrictionList != null && restrictionList.size() > 0 ) { + + XWPFTable table = doc.createTable(13, 3); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(1), "封闭"); + setTableFonts(table.getRow(0).getCell(2), "限行"); + + //excel + for (int i = 0; i < closeList.size(); i++){ + setTableFonts(table.getRow(i+1).getCell(0), closeList.get(i).get("causeTypeName").toString()); + setTableFonts(table.getRow(i+1).getCell(1), closeList.get(i).get("num").toString()); + setTableFonts(table.getRow(i+1).getCell(2), restrictionList.get(i).get("num").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(2); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"封闭","限行"}; + //分类信息 + for (int i = 0; i < closeList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(closeList.get(i).get("causeTypeName").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(closeList.get(i).get("num").toString())); + sheet.getRow(i+1).getCell(2).setCellValue(Long.parseLong(restrictionList.get(i).get("num").toString())); + + } + PoiUtil.wordExportChar(chart, "封闭原因统计", singleBarSeriesNames,sheet ); + + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + } + + //换行 + createLineBreak(doc); + } + + + /** + * @Description 封闭数量统计 + * + * @author liuwenge + * @date 2024/3/28 11:29 + * @param doc + * @return void + */ + public void closedQuantity(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "封闭数量统计"); + + List> closedQuantityList = dcTrafficIncidentsMapper.selectClosedQuantity(); + + if (closedQuantityList != null && closedQuantityList.size() > 0) { + + XWPFTable table = doc.createTable(25, 2); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(0), "时间"); + setTableFonts(table.getRow(0).getCell(1), "数量"); + + //excel + for (int i = 0; i < closedQuantityList.size(); i++){ + setTableFonts(table.getRow(i+1).getCell(0), closedQuantityList.get(i).get("hours").toString()); + setTableFonts(table.getRow(i+1).getCell(1), closedQuantityList.get(i).get("num").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(3); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"数量"}; + //分类信息 + for (int i = 0; i < closedQuantityList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(closedQuantityList.get(i).get("hours").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(closedQuantityList.get(i).get("num").toString())); + + } + PoiUtil.wordExportChar(chart, "封闭数量统计", singleBarSeriesNames,sheet ); + + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + } + + //换行 + createLineBreak(doc); + } + + + /** + * @Description 事故类型统计 + * + * @author liuwenge + * @date 2024/3/28 11:29 + * @param doc + * @return void + */ + public void accidentType(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "事故类型统计"); + + List> accidentTypeList = dcTrafficIncidentsMapper.selectAccidentTypeStatistics(); + + if (accidentTypeList != null && accidentTypeList.size() > 0) { + + XWPFTable table = doc.createTable(6, 2); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(0), "事故类型"); + setTableFonts(table.getRow(0).getCell(1), "数量"); + + //excel + for (int i = 0; i < accidentTypeList.size(); i++){ + setTableFonts(table.getRow(i+1).getCell(0), accidentTypeList.get(i).get("eventSubclassName").toString()); + setTableFonts(table.getRow(i+1).getCell(1), accidentTypeList.get(i).get("num").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate2.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(0); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"数量"}; + //分类信息 + for (int i = 0; i < accidentTypeList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(accidentTypeList.get(i).get("eventSubclassName").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(accidentTypeList.get(i).get("num").toString())); + + } + PoiUtil.wordExportChar(chart, "事故类型统计", singleBarSeriesNames,sheet ); + + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + } + + //换行 + createLineBreak(doc); + + List> trafficAccidentsList = dcTrafficIncidentsMapper.selectTrafficAccidents(); + + if (trafficAccidentsList != null && trafficAccidentsList.size() > 0) { + + XWPFTable table = doc.createTable(25, 2); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(0), "时间"); + setTableFonts(table.getRow(0).getCell(1), "数量"); + + //excel + for (int i = 0; i < trafficAccidentsList.size(); i++){ + setTableFonts(table.getRow(i+1).getCell(0), trafficAccidentsList.get(i).get("hours").toString()); + setTableFonts(table.getRow(i+1).getCell(1), trafficAccidentsList.get(i).get("num").toString()); + } + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(3); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"数量"}; + //分类信息 + for (int i = 0; i < trafficAccidentsList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(trafficAccidentsList.get(i).get("hours").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(trafficAccidentsList.get(i).get("num").toString())); + + } + PoiUtil.wordExportChar(chart, "事故时间统计", singleBarSeriesNames,sheet ); + + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + } + + //换行 + createLineBreak(doc); + } + + + + + /** + * @Description 拥堵地点 + * + * @author liuwenge + * @date 2024/3/28 16:56 + * @param doc + * @return void + */ + public void congestionLocation(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "拥堵地点"); + + List> congestionLocationList = dcTrafficIncidentsMapper.selectCongestionLocation(); + + if (congestionLocationList != null && congestionLocationList.size() > 0) { + + XWPFTable table = doc.createTable(2, 5); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + //表格插入总数 + setTableFonts(table.getRow(0).getCell(0), "合计"); + Long allNum = 0L; + for (Map map : congestionLocationList) { + allNum += Long.parseLong(map.get("num").toString()); + } + setTableFonts(table.getRow(1).getCell(0), allNum.toString()); + + //excel + for (int i = 0; i < congestionLocationList.size(); i++){ + setTableFonts(table.getRow(0).getCell(i+1), congestionLocationList.get(i).get("eventSubclassLabel").toString()); + setTableFonts(table.getRow(1).getCell(i+1), congestionLocationList.get(i).get("num").toString()); + } + + + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(1); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"数量"}; + //分类信息 + for (int i = 0; i < congestionLocationList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(congestionLocationList.get(i).get("eventSubclassLabel").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(congestionLocationList.get(i).get("num").toString())); + + } + for (int i = sheet.getLastRowNum(); i > congestionLocationList.size();i--){ + sheet.removeRow(sheet.getRow(i)); + } + PoiUtil.wordExportChar(chart, "拥堵地点", singleBarSeriesNames,sheet ); + + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + } + + //换行 + createLineBreak(doc); + } + + /** + * @Description 拥堵时长 + * + * @author liuwenge + * @date 2024/3/28 17:27 + * @param doc + * @return void + */ + public void congestionDuration(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "拥堵时长"); + + SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); + Calendar calendar = Calendar.getInstance(); + //将天至1 + calendar.set(Calendar.DAY_OF_MONTH, 1); + //将小时至0 + calendar.set(Calendar.HOUR_OF_DAY, 0); + //将分钟至0 + calendar.set(Calendar.MINUTE, 0); + //将秒至0 + calendar.set(Calendar.SECOND,0); + //将毫秒至0 + calendar.set(Calendar.MILLISECOND, 0); + //获得当前月第一天 + Date date = calendar.getTime(); + String startDate = dateFormat.format(date); + String endDate = dateFormat.format(new Date()); + + List> congestionDurationList = dcTrafficIncidentsMapper.selectCongestionDuration(startDate,endDate); + + if (congestionDurationList != null && congestionDurationList.size() > 0) { + + XWPFTable table = doc.createTable(2, 1); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(0), "合计"); + setTableFonts(table.getRow(1).getCell(0), congestionDurationList.get(0).get("minuteTime").toString()); + } + + //换行 + createLineBreak(doc); + } + + /** + * @Description 拥堵长度 + * + * @author liuwenge + * @date 2024/3/28 19:31 + * @param doc + * @return void + */ + public void congestionMileage(XWPFDocument doc) { + PoiUtil.createHeading2(doc, "拥堵长度"); + + List> congestionMileageList = dcTrafficIncidentsMapper.selectCongestionMileage(); + + if (congestionMileageList != null && congestionMileageList.size() > 0) { + + XWPFTable table = doc.createTable(2, 6); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + //表格插入总数 + setTableFonts(table.getRow(0).getCell(0), "合计"); + Long allNum = 0L; + for (Map map : congestionMileageList) { + allNum += Long.parseLong(map.get("num").toString()); + } + setTableFonts(table.getRow(1).getCell(0), allNum.toString()); + + //excel + for (int i = 0; i < congestionMileageList.size(); i++){ + setTableFonts(table.getRow(0).getCell(i+1), congestionMileageList.get(i).get("mileageType").toString()); + setTableFonts(table.getRow(1).getCell(i+1), congestionMileageList.get(i).get("num").toString()); + } + + + try { + + + // 复制Word模板 + InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("wordTemplate/chartTemplate.docx"); + XWPFDocument copiedTemplate = new XWPFDocument(inputStream); + + //获取word中所有图表对象 + List charts = copiedTemplate.getCharts(); + XWPFChart chart = charts.get(1); + XSSFWorkbook workbook = chart.getWorkbook(); + XSSFSheet sheet = workbook.getSheetAt(0); + + //系列信息 + String[] singleBarSeriesNames = {"数量"}; + //分类信息 + for (int i = 0; i < congestionMileageList.size(); i++){ + sheet.getRow(i+1).getCell(0).setCellValue(congestionMileageList.get(i).get("mileageType").toString()); + sheet.getRow(i+1).getCell(1).setCellValue(Long.parseLong(congestionMileageList.get(i).get("num").toString())); + + } + for (int i = sheet.getLastRowNum(); i > congestionMileageList.size();i--){ + sheet.removeRow(sheet.getRow(i)); + } + PoiUtil.wordExportChar(chart, "拥堵长度", singleBarSeriesNames,sheet ); + + + // 追加到同一个Word文档中 + mergeChart(chart,doc); +// PoiUtil.mergeDoc(copiedTemplate, doc); + + + // 关闭复制的模板文档 + copiedTemplate.close(); + + } catch (Exception e){ + e.printStackTrace(); + } + } + + //换行 + createLineBreak(doc); + } + +} diff --git a/zc-business/src/main/java/com/zc/business/domain/DcDevice.java b/zc-business/src/main/java/com/zc/business/domain/DcDevice.java index 9e0e0350..e19dbf00 100644 --- a/zc-business/src/main/java/com/zc/business/domain/DcDevice.java +++ b/zc-business/src/main/java/com/zc/business/domain/DcDevice.java @@ -3,6 +3,7 @@ package com.zc.business.domain; import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.mybatisplus.annotation.TableField; import com.baomidou.mybatisplus.annotation.TableId; +import com.zc.business.utils.StakeMarkUtils; import io.swagger.annotations.ApiModel; import io.swagger.annotations.ApiModelProperty; import lombok.Data; @@ -81,23 +82,6 @@ public class DcDevice { private String manufacturer; public Integer stakeMarkToInt() { - if (stakeMark == null) { - return null; - } - - // 不区分大小写的正则表达式匹配 'k' 和 '+' - String[] parts = this.stakeMark.split("(?i)k|\\+"); - - // 提取出公里数部分和米数部分 - String kmStr = parts[1].trim(); - // 将公里数和米数转换为整数 - int km = Integer.parseInt(kmStr); - int m = 0; - if (parts.length == 3) { - String mStr = parts[2].trim(); - m = Integer.parseInt(mStr); - } - // 计算总米数 - return km * 1000 + m; + return StakeMarkUtils.stakeMarkToInt(stakeMark); } } diff --git a/zc-business/src/main/java/com/zc/business/domain/DcTrafficMetricsData.java b/zc-business/src/main/java/com/zc/business/domain/DcTrafficMetricsData.java new file mode 100644 index 00000000..29e180af --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/domain/DcTrafficMetricsData.java @@ -0,0 +1,69 @@ +package com.zc.business.domain; + +import lombok.Data; + +import java.util.Date; + +/** + * 交通特征指数定义 + * @author xiepufeng + */ +@Data +public class DcTrafficMetricsData { + + /** + * 所属辖区路段 + */ + private Long roadSectionId; + + /** + * 交通组成特征指数 + */ + private Integer trafficFeature; + + /** + * 通道拥挤度 + */ + private Integer channelCongestionLevel; + + /** + * 路网拥挤度 + */ + private Integer roadNetworkCongestionLevel; + + /** + * 饱和度 + */ + private Integer saturationLevel; + + /** + * 统计时间 + */ + private Date statisticalDate; + + /** + * 道路方向 + */ + private Byte direction; + + /** + * 时段类型 + * 1-年 2-月 3-季 4-日 + */ + private Byte periodType; + + /** + * 交通量 + */ + private Integer trafficVolume; + + /** + * 拥堵路段数量 + */ + private Integer congestedSectionQuantity; + + /** + * 拥堵里程 + */ + private Integer congestedDistance; +} diff --git a/zc-business/src/main/java/com/zc/business/domain/DcTrafficVolumeForecast.java b/zc-business/src/main/java/com/zc/business/domain/DcTrafficVolumeForecast.java new file mode 100644 index 00000000..0e7d3d0e --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/domain/DcTrafficVolumeForecast.java @@ -0,0 +1,34 @@ +package com.zc.business.domain; + +import com.baomidou.mybatisplus.annotation.TableId; +import lombok.Data; + +/** + * 路段设计交通量预测数据定义 + * @author xiepufeng + */ +@Data +public class DcTrafficVolumeForecast { + + /** + * 主键 + */ + @TableId + private Long id; + + /** + * 所属路段 + */ + private Long roadSectionId; + + /** + * 年份 + */ + private Integer year; + + /** + * 设计交通量 + */ + private Integer designTrafficVolume; + +} diff --git a/zc-business/src/main/java/com/zc/business/enums/CameraDirection.java b/zc-business/src/main/java/com/zc/business/enums/CameraDirectionEnum.java similarity index 72% rename from zc-business/src/main/java/com/zc/business/enums/CameraDirection.java rename to zc-business/src/main/java/com/zc/business/enums/CameraDirectionEnum.java index ee6d1d0c..2cb2d139 100644 --- a/zc-business/src/main/java/com/zc/business/enums/CameraDirection.java +++ b/zc-business/src/main/java/com/zc/business/enums/CameraDirectionEnum.java @@ -3,7 +3,7 @@ package com.zc.business.enums; /** * 摄像头方向 */ -public enum CameraDirection { +public enum CameraDirectionEnum { /** * 摄像头上行 */ @@ -20,7 +20,7 @@ public enum CameraDirection { private final int code; private final String description; - CameraDirection(int code, String description) { + CameraDirectionEnum(int code, String description) { this.code = code; this.description = description; } @@ -34,8 +34,8 @@ public enum CameraDirection { } // 可选:根据code获取枚举值 - public static CameraDirection fromCode(int code) { - for (CameraDirection direction : values()) { + public static CameraDirectionEnum fromCode(int code) { + for (CameraDirectionEnum direction : values()) { if (direction.getCode() == code) { return direction; } @@ -44,15 +44,15 @@ public enum CameraDirection { } - public LaneDirection toLaneDirection() { + public LaneDirectionEnum toLaneDirection() { switch (this) { case UPWARD: - return LaneDirection.UPWARD; + return LaneDirectionEnum.UPWARD; case DOWN: - return LaneDirection.DOWNWARD; + return LaneDirectionEnum.DOWNWARD; case BIDIRECTIONAL: // 假设摄像机双向就映射为车道双向 - return LaneDirection.BIDIRECTIONAL; + return LaneDirectionEnum.BIDIRECTIONAL; default: throw new IllegalStateException("未知的CameraDirection: " + this); } diff --git a/zc-business/src/main/java/com/zc/business/enums/ChannelCongestionLevelEnum.java b/zc-business/src/main/java/com/zc/business/enums/ChannelCongestionLevelEnum.java new file mode 100644 index 00000000..f151e262 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/enums/ChannelCongestionLevelEnum.java @@ -0,0 +1,98 @@ +package com.zc.business.enums; + +import lombok.Getter; + +/** + * 通道拥挤度等级枚举 + * @author xiepufeng + */ +@Getter +public enum ChannelCongestionLevelEnum { + + /** + * 表示通道畅通,速度阈值为70 km/h + */ + FLOWING(70, 0, "畅通"), + + /** + * 表示通道基本畅通,速度阈值为50 km/h + */ + BASIC_FLOWING(50, 0, "基本畅通"), + + /** + * 表示通道轻度拥堵,速度阈值为40 km/h + */ + LIGHT_CONGESTION(40, 1, "轻度拥堵"), + + /** + * 表示通道中度拥堵,速度阈值为20 km/h + */ + MEDIUM_CONGESTION(20, 2, "中度拥堵"), + + /** + * 使用负数作为默认值,表示无限小,始终小于其他速度阈值,表示通道严重拥堵 + */ + SEVERE_CONGESTION(-1, 4, "严重拥堵"); + + /** + * 速度阈值,用于判断通道拥挤程度 + */ + private final int speedThreshold; + + /** + * 默认的拥堵里程数 + */ + private final int defaultCongestionDistance; + + /** + * 对拥挤度等级的描述 + */ + private final String description; + + /** + * 构造函数,初始化通道拥挤度等级。 + * + * @param speedThreshold 速度阈值 + * @param description 等级描述 + */ + ChannelCongestionLevelEnum(int speedThreshold, int defaultCongestionMiles, String description) { + this.speedThreshold = speedThreshold; + this.defaultCongestionDistance = defaultCongestionMiles; + this.description = description; + } + + /** + * 根据给定速度,返回对应的通道拥挤度等级。 + * + * @param speed 速度(单位:km/h) + * @return 对应的通道拥挤度等级 + */ + public static ChannelCongestionLevelEnum fromSpeed(int speed) { + for (ChannelCongestionLevelEnum level : values()) { + if (speed > level.speedThreshold) { + return level; + } + } + return SEVERE_CONGESTION; // 若速度小于等于所有等级阈值,则视为严重拥堵 + } + + /** + * 判断速度是否是是中度拥堵或者严重拥堵 + */ + public static boolean isMediumOrSevereCongestion(int speed) { + ChannelCongestionLevelEnum level = fromSpeed(speed); + return level == MEDIUM_CONGESTION || level == SEVERE_CONGESTION; + } + + /** + * 判断给定速度是否属于指定的拥挤度等级。 + * + * @param speed 速度(单位:km/h) + * @param level 拥挤度等级 + * @return 如果速度属于该等级,返回true;否则返回false。 + */ + public static boolean isWithinLevel(int speed, ChannelCongestionLevelEnum level) { + ChannelCongestionLevelEnum currentLevel = fromSpeed(speed); + return currentLevel == level; + } +} diff --git a/zc-business/src/main/java/com/zc/business/enums/DeviceDataCategory.java b/zc-business/src/main/java/com/zc/business/enums/DeviceDataCategoryEnum.java similarity index 73% rename from zc-business/src/main/java/com/zc/business/enums/DeviceDataCategory.java rename to zc-business/src/main/java/com/zc/business/enums/DeviceDataCategoryEnum.java index 82bd185a..12fd766d 100644 --- a/zc-business/src/main/java/com/zc/business/enums/DeviceDataCategory.java +++ b/zc-business/src/main/java/com/zc/business/enums/DeviceDataCategoryEnum.java @@ -6,13 +6,13 @@ import lombok.Getter; * @author xiepufeng */ @Getter -public enum DeviceDataCategory { +public enum DeviceDataCategoryEnum { REAL_TIME("实时数据"), HISTORY("历史数据"); private final String description; - DeviceDataCategory(String description) { + DeviceDataCategoryEnum(String description) { this.description = description; } diff --git a/zc-business/src/main/java/com/zc/business/enums/LaneDirection.java b/zc-business/src/main/java/com/zc/business/enums/LaneDirectionEnum.java similarity index 63% rename from zc-business/src/main/java/com/zc/business/enums/LaneDirection.java rename to zc-business/src/main/java/com/zc/business/enums/LaneDirectionEnum.java index ee51bfe8..3aeb5163 100644 --- a/zc-business/src/main/java/com/zc/business/enums/LaneDirection.java +++ b/zc-business/src/main/java/com/zc/business/enums/LaneDirectionEnum.java @@ -8,7 +8,7 @@ import lombok.Getter; * @author xiepufeng **/ @Getter -public enum LaneDirection { +public enum LaneDirectionEnum { UPWARD((byte)1, "上行"), BIDIRECTIONAL((byte) 2, "上下行(双向)"), @@ -17,18 +17,18 @@ public enum LaneDirection { private final byte value; private final String description; - LaneDirection(byte value, String description) { + LaneDirectionEnum(byte value, String description) { this.value = value; this.description = description; } - - public static LaneDirection fromValue(int value) { - for (LaneDirection direction : values()) { + + public static LaneDirectionEnum fromValue(int value) { + for (LaneDirectionEnum direction : values()) { if (direction.getValue() == value) { return direction; } } - throw new IllegalArgumentException("Invalid value for LaneDirection: " + value); + throw new IllegalArgumentException("无效的LaneDirection值: " + value); } } diff --git a/zc-business/src/main/java/com/zc/business/enums/VehicleLoadSaturationFactorEnum.java b/zc-business/src/main/java/com/zc/business/enums/VehicleLoadSaturationFactorEnum.java new file mode 100644 index 00000000..4f907e37 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/enums/VehicleLoadSaturationFactorEnum.java @@ -0,0 +1,48 @@ +package com.zc.business.enums; + +import lombok.Getter; + +/** + * 饱和度计算车辆折算系数 + * @author xiepufeng + */ +@Getter +public enum VehicleLoadSaturationFactorEnum { + /** + * 小客车,车辆折算系数1.0,座位≤19座的客车和载质量≤2t的货车 + */ + PASSENGER_CAR(1.0, "小客车,座位≤19座的客车和载质量≤2t的货车"), + + /** + * 中型车,车辆折算系数1.5,座位>19座的客车和2t<载质量≤7t的货车 + */ + MEDIUM_VEHICLE(1.5, "中型车,座位>19座的客车和2t<载质量≤7t的货车"), + + /** + * 大型车,车辆折算系数2.5,7t<载质量≤20t的货车 + */ + LARGE_VEHICLE(2.5, "大型车,7t<载质量≤20t的货车"), + + /** + * 汽车列车,车辆折算系数4.0,20t<载质量的货车 + */ + TRUCK_TRAINS(4.0, "汽车列车,20t<载质量的货车"); + + private final double conversionFactor; + private final String description; + + VehicleLoadSaturationFactorEnum(double conversionFactor, String description) { + this.conversionFactor = conversionFactor; + this.description = description; + } + + // 如果需要根据车辆折算系数查找枚举项 + public static VehicleLoadSaturationFactorEnum findByConversionFactor(double conversionFactor) { + for (VehicleLoadSaturationFactorEnum type : values()) { + if (type.getConversionFactor() == conversionFactor) { + return type; + } + } + throw new IllegalArgumentException("未知的饱和度计算车辆折算系数:" + conversionFactor); + } +} diff --git a/zc-business/src/main/java/com/zc/business/mapper/DcTrafficIncidentsMapper.java b/zc-business/src/main/java/com/zc/business/mapper/DcTrafficIncidentsMapper.java index d01d8a09..dfaf12ee 100644 --- a/zc-business/src/main/java/com/zc/business/mapper/DcTrafficIncidentsMapper.java +++ b/zc-business/src/main/java/com/zc/business/mapper/DcTrafficIncidentsMapper.java @@ -236,4 +236,97 @@ public interface DcTrafficIncidentsMapper { */ List> selectEventTypeAnalysis(@Param("direction") String direction,@Param("type") String type,@Param("startTime") String startTime); + /** + * @Description 交通管制情况 + * + * @author liuwenge + * @date 2024/3/27 18:32 + * @param startTime + * @param endTime + * @return java.util.List> + */ + List> selectTrafficControlAnalysis(@Param("startTime") String startTime,@Param("endTime") String endTime); + + /** + * @Description 交通事故统计 + * + * @author liuwenge + * @date 2024/3/27 20:04 + * @param + * @return java.util.List> + */ + List> selectTrafficAccidentAnalysis(); + + /** + * @Description 封闭原因统计 + * + * @author liuwenge + * @date 2024/3/28 14:47 + * @param controlType + * @param startTime + * @param endTime + * @return java.util.List> + */ + List> selectTrafficControlReasons(@Param("controlType") String controlType,@Param("startTime") String startTime,@Param("endTime") String endTime); + + + /** + * @Description 封闭数量统计 + * + * @author liuwenge + * @date 2024/3/28 14:51 + * @param + * @return java.util.List> + */ + List> selectClosedQuantity(); + + /** + * @Description 事故类型统计--当月按类型 + * + * @author liuwenge + * @date 2024/3/28 15:19 + * @param + * @return java.util.List> + */ + List> selectAccidentTypeStatistics(); + + /** + * @Description 事故类型统计--当天按小时 + * + * @author liuwenge + * @date 2024/3/28 16:28 + * @param + * @return java.util.List> + */ + List> selectTrafficAccidents(); + + /** + * @Description 拥堵地点 + * + * @author liuwenge + * @date 2024/3/28 16:55 + * @param + * @return java.util.List> + */ + List> selectCongestionLocation(); + + /** + * @Description 拥堵时长 + * + * @author liuwenge + * @date 2024/3/28 17:23 + * @param + * @return java.util.List> + */ + List> selectCongestionDuration(@Param("startTime") String startTime,@Param("endTime") String endTime); + + /** + * @Description 拥堵长度 + * + * @author liuwenge + * @date 2024/3/28 19:30 + * @return java.util.List> + */ + List> selectCongestionMileage(); + } diff --git a/zc-business/src/main/java/com/zc/business/mapper/DcTrafficVolumeForecastMapper.java b/zc-business/src/main/java/com/zc/business/mapper/DcTrafficVolumeForecastMapper.java new file mode 100644 index 00000000..ee8e8aa7 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/mapper/DcTrafficVolumeForecastMapper.java @@ -0,0 +1,18 @@ +package com.zc.business.mapper; + +import com.baomidou.mybatisplus.core.mapper.BaseMapper; +import com.zc.business.domain.DcTrafficSectionData; +import com.zc.business.domain.DcTrafficVolumeForecast; +import org.apache.ibatis.annotations.Mapper; + +import java.util.Date; + +/** + * 路段设计日最大交通量预测数据Mapper接口 + * + * @author xiepufeng + */ +@Mapper +public interface DcTrafficVolumeForecastMapper extends BaseMapper { + +} diff --git a/zc-business/src/main/java/com/zc/business/message/device/handler/DeviceMessageHandler.java b/zc-business/src/main/java/com/zc/business/message/device/handler/DeviceMessageHandler.java index 690be7b3..ec36ba9f 100644 --- a/zc-business/src/main/java/com/zc/business/message/device/handler/DeviceMessageHandler.java +++ b/zc-business/src/main/java/com/zc/business/message/device/handler/DeviceMessageHandler.java @@ -52,7 +52,7 @@ public class DeviceMessageHandler { private RedisCache redisCache; @Resource - private DcTrafficSectionDataService dcTrafficSectionDataService; + private DcTrafficStatisticsService dcTrafficSectionDataService; @Autowired private IDcMeteorologicalDetectorDataService meteorologicalDetectorDataService; diff --git a/zc-business/src/main/java/com/zc/business/request/DcTrafficMetricsDataRequest.java b/zc-business/src/main/java/com/zc/business/request/DcTrafficMetricsDataRequest.java new file mode 100644 index 00000000..bd882e7a --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/request/DcTrafficMetricsDataRequest.java @@ -0,0 +1,44 @@ +package com.zc.business.request; + +import lombok.Data; + +import java.util.Date; + +/** + * 交通特征指数请求参数定义 + * @author xiepufeng + */ +@Data +public class DcTrafficMetricsDataRequest { + + /** + * 所属辖区路段 + */ + private Long roadSectionId; + + /** + * 道路方向 + */ + private Byte direction; + + /** + * 时段类型 + * 1-年 2-月 3-季 4-日 + */ + private Byte periodType; + + /** + * 开始时间 + */ + private Date startTime; + + /** + * 结束时间 + */ + private Date endTime; + + /** + * 是否分路段统计 + */ + private boolean segmented; +} diff --git a/zc-business/src/main/java/com/zc/business/service/DcTrafficSectionDataService.java b/zc-business/src/main/java/com/zc/business/service/DcTrafficSectionDataService.java deleted file mode 100644 index 7e3db831..00000000 --- a/zc-business/src/main/java/com/zc/business/service/DcTrafficSectionDataService.java +++ /dev/null @@ -1,15 +0,0 @@ -package com.zc.business.service; - -import com.alibaba.fastjson.JSONObject; -import com.baomidou.mybatisplus.extension.service.IService; -import com.zc.business.domain.DcTrafficSectionData; - -public interface DcTrafficSectionDataService extends IService { - - /** - * 处理实时接收到的一类交流站设备消息,并将其转换为交通断面统计数据对象并缓存。 - * - * @param msg 设备发送的JSON格式实时消息 - */ - void processRealtimeOneStopMessage(JSONObject msg); -} diff --git a/zc-business/src/main/java/com/zc/business/service/DcTrafficStatisticsService.java b/zc-business/src/main/java/com/zc/business/service/DcTrafficStatisticsService.java new file mode 100644 index 00000000..bceec71b --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/service/DcTrafficStatisticsService.java @@ -0,0 +1,38 @@ +package com.zc.business.service; + +import com.alibaba.fastjson.JSONObject; +import com.baomidou.mybatisplus.extension.service.IService; +import com.zc.business.domain.DcTrafficMetricsData; +import com.zc.business.domain.DcTrafficSectionData; +import com.zc.business.request.DcTrafficMetricsDataRequest; + +import java.util.List; + +public interface DcTrafficStatisticsService extends IService { + + /** + * 处理实时接收到的一类交流站设备消息,并将其转换为交通断面统计数据对象并缓存。 + * + * @param msg 设备发送的JSON格式实时消息 + */ + void processRealtimeOneStopMessage(JSONObject msg); + + + /** + * 根据提供的请求参数获取当前的流量指标数据。 + * + * @param request 包含获取流量指标所需的所有请求参数的对象。 + * @return DcTrafficMetricsData 返回一个包含当前流量指标数据的对象。 + * 该对象包含了关于数据中心网络流量的各种度量指标。 + */ + DcTrafficMetricsData currentTrafficMetrics(DcTrafficMetricsDataRequest request); + + + /** + * 获取历史流量指标数据列表。 + * + * @param request 包含获取流量指标所需的所有请求参数的对象。 + * @return 返回符合查询条件的历史流量指标数据列表。 + */ + List historyTrafficMetrics(DcTrafficMetricsDataRequest request); +} diff --git a/zc-business/src/main/java/com/zc/business/service/DcTrafficVolumeForecastService.java b/zc-business/src/main/java/com/zc/business/service/DcTrafficVolumeForecastService.java new file mode 100644 index 00000000..7e7586ee --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/service/DcTrafficVolumeForecastService.java @@ -0,0 +1,7 @@ +package com.zc.business.service; + +import com.baomidou.mybatisplus.extension.service.IService; +import com.zc.business.domain.DcTrafficVolumeForecast; + +public interface DcTrafficVolumeForecastService extends IService { +} diff --git a/zc-business/src/main/java/com/zc/business/service/impl/DcRoadSectionServiceImpl.java b/zc-business/src/main/java/com/zc/business/service/impl/DcRoadSectionServiceImpl.java index 0db3e373..f536e8cf 100644 --- a/zc-business/src/main/java/com/zc/business/service/impl/DcRoadSectionServiceImpl.java +++ b/zc-business/src/main/java/com/zc/business/service/impl/DcRoadSectionServiceImpl.java @@ -5,7 +5,10 @@ import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern; +import com.ruoyi.common.core.redis.RedisCache; import com.ruoyi.common.utils.DateUtils; +import com.zc.business.constant.RedisKeyConstants; +import com.zc.business.domain.DcDevice; import org.apache.commons.lang3.StringUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; @@ -14,6 +17,9 @@ import com.zc.business.domain.DcRoadSection; import com.zc.business.service.IDcRoadSectionService; import org.w3c.dom.CDATASection; +import javax.annotation.PostConstruct; +import javax.annotation.Resource; + /** * 辖区路段Service业务层处理 * @@ -26,6 +32,34 @@ public class DcRoadSectionServiceImpl implements IDcRoadSectionService @Autowired private DcRoadSectionMapper dcRoadSectionMapper; + @Resource + private RedisCache redisCache; + + @PostConstruct + public void init() { + /* + 添加数据到 redis 缓存 + */ + updateRedisCache(); + } + + /** + * 添加数据到 redis 缓存 + */ + public void updateRedisCache() { + // 获取全部设备列表数据 + List dcRoadSections = dcRoadSectionMapper.selectDcRoadSectionList(null); + if (dcRoadSections == null || dcRoadSections.isEmpty()) { + return; + } + + // 清楚 redis 缓存数据 + redisCache.deleteObject(RedisKeyConstants.DC_ROAD_SECTION); + + // 添加 redis 缓存数据 + dcRoadSections.forEach(val -> redisCache.setCacheMapValue(RedisKeyConstants.DC_ROAD_SECTION, val.getId(), val)); + } + /** * 查询辖区路段 * @@ -108,7 +142,12 @@ public class DcRoadSectionServiceImpl implements IDcRoadSectionService public int insertDcRoadSection(DcRoadSection dcRoadSection) { dcRoadSection.setCreateTime(DateUtils.getNowDate()); - return dcRoadSectionMapper.insertDcRoadSection(dcRoadSection); + + int result = dcRoadSectionMapper.insertDcRoadSection(dcRoadSection); + if (result > 0) { + updateRedisCache(); + } + return result; } /** @@ -121,7 +160,11 @@ public class DcRoadSectionServiceImpl implements IDcRoadSectionService public int updateDcRoadSection(DcRoadSection dcRoadSection) { dcRoadSection.setUpdateTime(DateUtils.getNowDate()); - return dcRoadSectionMapper.updateDcRoadSection(dcRoadSection); + int result = dcRoadSectionMapper.updateDcRoadSection(dcRoadSection); + if (result > 0) { + updateRedisCache(); + } + return result; } /** @@ -133,7 +176,11 @@ public class DcRoadSectionServiceImpl implements IDcRoadSectionService @Override public int deleteDcRoadSectionByIds(Long[] ids) { - return dcRoadSectionMapper.deleteDcRoadSectionByIds(ids); + int result = dcRoadSectionMapper.deleteDcRoadSectionByIds(ids); + if (result > 0) { + updateRedisCache(); + } + return result; } /** @@ -145,7 +192,11 @@ public class DcRoadSectionServiceImpl implements IDcRoadSectionService @Override public int deleteDcRoadSectionById(Long id) { - return dcRoadSectionMapper.deleteDcRoadSectionById(id); + int result = dcRoadSectionMapper.deleteDcRoadSectionById(id); + if (result > 0) { + updateRedisCache(); + } + return result; } //查询路线id与名称 @Override diff --git a/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficStatisticsServiceImpl.java b/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficStatisticsServiceImpl.java new file mode 100644 index 00000000..8fcd0f3f --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficStatisticsServiceImpl.java @@ -0,0 +1,324 @@ +package com.zc.business.service.impl; + +import cn.hutool.core.date.DateUtil; +import com.alibaba.fastjson.JSONArray; +import com.alibaba.fastjson.JSONObject; +import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper; +import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl; +import com.ruoyi.common.core.redis.RedisCache; +import com.ruoyi.common.exception.ServiceException; +import com.zc.business.constant.RedisKeyConstants; +import com.zc.business.controller.DcDeviceController; +import com.zc.business.domain.DcRoadSection; +import com.zc.business.domain.DcTrafficMetricsData; +import com.zc.business.domain.DcTrafficSectionData; +import com.zc.business.enums.*; +import com.zc.business.request.DcTrafficMetricsDataRequest; +import com.zc.business.statistics.cache.*; +import com.zc.business.mapper.DcTrafficSectionDataMapper; +import com.zc.business.service.DcTrafficStatisticsService; +import com.zc.business.statistics.handler.TrafficAnalysis; +import com.zc.business.statistics.handler.TrafficStatistics; +import com.zc.business.utils.StakeMarkUtils; +import com.zc.common.core.httpclient.exception.HttpException; +import org.slf4j.Logger; +import org.slf4j.LoggerFactory; +import org.springframework.stereotype.Service; + +import javax.annotation.PostConstruct; +import javax.annotation.Resource; +import java.io.IOException; +import java.util.*; +import java.util.stream.Collectors; + +/** + * 交通断面数据服务实现类,负责处理实时设备消息、缓存数据、定时任务以及数据保存等功能。 + * + * @author xiepufeng + */ +@Service +public class DcTrafficStatisticsServiceImpl + extends ServiceImpl + implements DcTrafficStatisticsService { + + // 日志记录器 + protected final Logger logger = LoggerFactory.getLogger(this.getClass()); + + @Resource + private RedisCache redisCache; + + @Resource + private DcDeviceController dcDeviceController; + + @Resource + private TrafficStatistics trafficStatistics; + + @Resource + private TrafficAnalysis trafficAnalysis; + + /** + * 初始化方法,用于在对象创建后恢复各种周期的交通数据缓存。 + * 该方法标注了@PostConstruct注解,确保在依赖注入完成后调用。 + */ + @PostConstruct + public void init() { + recoveryDailyCache(); // 从es中恢复当天交通数据缓存 + recoveryMonthlyCache(); // 恢复每月交通数据缓存 + recoveryQuarterlyCache(); // 恢复每季度交通数据缓存 + recoveryYearlyCache(); // 恢复每年交通数据缓存 + } + + /** + * 处理实时接收到的一类交流站设备消息,并将其转换为交通断面统计数据对象并缓存。 + * + * @param msg 设备发送的JSON格式实时消息 + */ + @Override + public void processRealtimeOneStopMessage(JSONObject msg) { + + // 1. 将设备消息转换为交通断面数据统计定义对象 + List dcTrafficSectionDataList = trafficStatistics.convertToTrafficStatistics(msg, DeviceDataCategoryEnum.REAL_TIME); + + if (dcTrafficSectionDataList != null && !dcTrafficSectionDataList.isEmpty()) { + // 2. 添加到缓存中 + dcTrafficSectionDataList.forEach(this::addCacheData); + } + } + + /** + * 根据请求获取当前交通流量指标数据。 + * + * @param request 包含获取流量指标所需的所有请求参数的对象。 + * @return 返回当前交通流量指标数据。 + * @throws ServiceException 如果没有获取到交通数据,则抛出异常。 + */ + @Override + public DcTrafficMetricsData currentTrafficMetrics(DcTrafficMetricsDataRequest request) { + + // 从Redis缓存中获取指定方向的交通路段数据列表 + List dcTrafficSectionDataCaches = getDcTrafficSectionDataRedisCache(request.getDirection()); + + // 根据指定的方向和路段ID范围获取交通数据 + List trafficSectionDataList = fetchTrafficDataByDirAndRange(request.getRoadSectionId(), dcTrafficSectionDataCaches); + + // 对获取的交通路段数据进行分析,得到交通指标数据 + List dcTrafficMetricsDataList = trafficAnalysis.calculateTrafficMetrics(request, trafficSectionDataList); + + if (dcTrafficMetricsDataList == null || dcTrafficMetricsDataList.isEmpty()) { + // 如果没有获取到数据,则抛出异常 + throw new ServiceException("获取当前交通特征指数失败"); + } + + // 根据收集到的交通段数据计算并返回交通指标数据 + return dcTrafficMetricsDataList.get(0); + } + + + /** + * 计算获取指定条件下的历史交通流量指标数据。 + * + * @param request 包含查询条件的请求对象,包括开始时间、结束时间、方向、周期类型和所属路段ID等信息。 + * @return 返回一个包含交通流量指标数据的列表。 + */ + @Override + public List historyTrafficMetrics(DcTrafficMetricsDataRequest request) { + + if (request.getStartTime() == null || request.getEndTime() == null) { + throw new ServiceException("开始时间或结束时间不能为空"); + } + + if (request.getPeriodType() == null) { + throw new ServiceException("时段类型不能为空"); + } + + // 构建查询条件 + LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); + queryWrapper.between(DcTrafficSectionData::getStatisticalDate, request.getStartTime(), request.getEndTime()); + queryWrapper.eq(DcTrafficSectionData::getPeriodType, request.getPeriodType()); + queryWrapper.eq(DcTrafficSectionData::getDirection, request.getDirection()); + + // 根据请求获取所属路段ID,并进一步筛选路段范围内的数据 + Long roadSectionId = request.getRoadSectionId(); + + if (roadSectionId != null) { + // 从缓存中获取路段信息,并根据路段的起止桩号筛选数据 + DcRoadSection dcRoadSection = redisCache.getCacheMapValue(RedisKeyConstants.DC_ROAD_SECTION, roadSectionId); + if (dcRoadSection != null) { + queryWrapper.between( + DcTrafficSectionData::getStakeMark, + StakeMarkUtils.stakeMarkToInt(dcRoadSection.getStartStakeMark()), + StakeMarkUtils.stakeMarkToInt(dcRoadSection.getEndStakeMark())); + } + } + + // 根据收集到的交通段数据计算并返回交通指标数据 + return trafficAnalysis.calculateTrafficMetrics(request, list(queryWrapper)); + } + + + /** + * 恢复每日缓存的函数。 + * 该方法尝试从物联平台获取所有设备信息,并对这些信息进行处理。 + * 如果获取信息失败或处理过程中发生异常,则记录错误信息。 + */ + private void recoveryDailyCache() { + + try { + // 尝试从指定产品ID获取设备信息 + Map oneStopDeviceMap = dcDeviceController.getDeviceByProductId(IotProductEnum.ONE_STOP_PRODUCT.value()); + + // 检查获取的设备信息是否为空 + if (oneStopDeviceMap == null || oneStopDeviceMap.get("data") == null) { + logger.error("获取一类交通量调查站设备数据失败,产品id:{}", IotProductEnum.ONE_STOP_PRODUCT.value()); + return; + } + + // 将获取的设备信息转换为JSON数组,并遍历处理每个设备的数据 + JSONArray deviceJsonArray = JSONArray.parseArray(oneStopDeviceMap.get("data").toString()); + deviceJsonArray.forEach(trafficStatistics::processDeviceData); + + } catch (HttpException | IOException e) { + // 记录处理设备数据时发生的异常 + logger.error("处理设备数据时发生异常", e); + } + } + + /** + * 恢复每月交通数据缓存的方法。 + * 通过查询当前月份至今的每日交通数据,并将其添加到每月交通统计缓存中。 + */ + private void recoveryMonthlyCache() { + // 构建查询条件,查询当前月份至今的每日交通数据 + LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); + queryWrapper.eq(DcTrafficSectionData::getPeriodType, TrafficDataPeriodTypeEnum.DAY); + queryWrapper.between(DcTrafficSectionData::getStatisticalDate, DateUtil.beginOfMonth(new Date()), new Date()); + List dcTrafficSectionDataList = this.list(queryWrapper); + // 遍历查询结果,将每日数据添加到每月交通统计缓存 + dcTrafficSectionDataList.forEach(MonthlyTrafficStatisticsCache::addCacheData); + } + + /** + * 恢复每季度交通数据缓存的方法。 + * 通过查询当前季度至今的每月交通数据,并将其添加到每季度交通统计缓存中。 + */ + private void recoveryQuarterlyCache() { + // 构建查询条件,查询当前季度至今的每月交通数据 + LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); + queryWrapper.eq(DcTrafficSectionData::getPeriodType, TrafficDataPeriodTypeEnum.MONTH); + queryWrapper.between(DcTrafficSectionData::getStatisticalDate, DateUtil.beginOfQuarter(new Date()), new Date()); + List dcTrafficSectionDataList = this.list(queryWrapper); + // 遍历查询结果,将每月数据添加到每季度交通统计缓存 + dcTrafficSectionDataList.forEach(QuarterlyTrafficStatisticsCache::addCacheData); + } + + /** + * 恢复每年交通数据缓存的方法。 + * 通过查询当前年份至今的每季度交通数据,并将其添加到每年交通统计缓存中。 + */ + private void recoveryYearlyCache() { + // 构建查询条件,查询当前年份至今的每季度交通数据 + LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); + queryWrapper.eq(DcTrafficSectionData::getPeriodType, TrafficDataPeriodTypeEnum.QUARTER); + queryWrapper.between(DcTrafficSectionData::getStatisticalDate, DateUtil.beginOfYear(new Date()), new Date()); + List dcTrafficSectionDataList = this.list(queryWrapper); + // 遍历查询结果,将每季度数据添加到每年交通统计缓存 + dcTrafficSectionDataList.forEach(YearlyTrafficStatisticsCache::addCacheData); + } + + /** + * 将交通数据添加到缓存中。 + * 该方法将交通数据既添加到日交通数据缓存中,也实时缓存到Redis中。 + * + * @param dcTrafficSectionData 交通段数据对象,包含交通数据的详细信息。 + */ + private void addCacheData(DcTrafficSectionData dcTrafficSectionData) { + // 添加到日交通数据缓存中 + DailyTrafficStatisticsCache.addCacheData(dcTrafficSectionData); + + // 将数据缓存到redis中 + redisCache.setCacheMapValue(RedisKeyConstants.getDcDevicesTrafficStatisticsKey(dcTrafficSectionData.getDirection()), + dcTrafficSectionData.getDeviceId(), + dcTrafficSectionData); + } + + /** + * 从Redis缓存中获取指定方向的交通路段数据列表。 + * + * @param direction 交通方向,如果为null,则获取双向数据 + * @return DcTrafficSectionData列表,确保列表非空 + */ + public List getDcTrafficSectionDataRedisCache(Byte direction) { + + Map dcTrafficSectionDataMap = new HashMap<>(); + + // 根据方向选择相应的交通数据 + Map trafficDataMap = (direction != null) + ? getTrafficDataByDirection(direction) + : getTrafficDataForBothDirections(); + + // 将获取的交通数据合并到结果映射中 + if (trafficDataMap != null) { + dcTrafficSectionDataMap.putAll(trafficDataMap); + } + + // 将结果映射的值转换为列表并返回,确保列表非空 + return new ArrayList<>(dcTrafficSectionDataMap.values()); + } + + /** + * 根据方向获取交通流量数据 + * + * @param direction 方向 + * @return 单向交通流量数据 + */ + private Map getTrafficDataByDirection(Byte direction) { + return redisCache.getCacheMapValue(RedisKeyConstants.getDcDevicesTrafficStatisticsKey(direction)); + } + + /** + * 获取上行和下行所有交通流量数据 + * + * @return 所有交通流量数据 + */ + private Map getTrafficDataForBothDirections() { + Map allData = new HashMap<>(); + allData.putAll(redisCache.getCacheMapValue(RedisKeyConstants.getDcDevicesTrafficStatisticsKey(LaneDirectionEnum.UPWARD.getValue()))); + allData.putAll(redisCache.getCacheMapValue(RedisKeyConstants.getDcDevicesTrafficStatisticsKey(LaneDirectionEnum.DOWNWARD.getValue()))); + return allData; + } + + /** + * 根据指定的方向和路段ID范围获取交通数据。 + * + * @param roadSectionId 指定的路段ID,如果为null,则不根据路段筛选数据。 + * @return 返回符合指定方向和路段范围的交通段数据列表。 + */ + public List fetchTrafficDataByDirAndRange(Long roadSectionId, List dcTrafficSectionDataCaches) { + // 初始化路段起始和终止桩号 + Integer startStakeMark; + Integer endStakeMark; + + // 根据提供的路段ID查询路段信息,并转换为起始和终止桩号 + if (roadSectionId != null) { + DcRoadSection dcRoadSection = redisCache.getCacheMapValue(RedisKeyConstants.DC_ROAD_SECTION, roadSectionId); + + // 验证路段ID是否存在 + if (dcRoadSection == null) { + throw new ServiceException("路段ID不存在"); + } + + startStakeMark = StakeMarkUtils.stakeMarkToInt(dcRoadSection.getStartStakeMark()); + endStakeMark = StakeMarkUtils.stakeMarkToInt(dcRoadSection.getEndStakeMark()); + } else { + startStakeMark = null; + endStakeMark = null; + } + + // 筛选并返回符合路段范围条件的交通数据列表 + return dcTrafficSectionDataCaches.stream() + .filter(data -> startStakeMark == null || endStakeMark == null + || (data.getStakeMark() >= startStakeMark && data.getStakeMark() <= endStakeMark)) + .collect(Collectors.toList()); + } + +} diff --git a/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficVolumeForecastServiceImpl.java b/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficVolumeForecastServiceImpl.java new file mode 100644 index 00000000..eee59c30 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficVolumeForecastServiceImpl.java @@ -0,0 +1,19 @@ +package com.zc.business.service.impl; + +import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl; +import com.zc.business.domain.DcTrafficVolumeForecast; +import com.zc.business.mapper.DcTrafficVolumeForecastMapper; +import com.zc.business.service.DcTrafficVolumeForecastService; +import org.springframework.stereotype.Service; + +/** + * 交通断面数据服务实现类,负责处理实时设备消息、缓存数据、定时任务以及数据保存等功能。 + * + * @author xiepufeng + */ +@Service +public class DcTrafficVolumeForecastServiceImpl + extends ServiceImpl + implements DcTrafficVolumeForecastService { + +} diff --git a/zc-business/src/main/java/com/zc/business/statistics/handler/RealtimeTrafficStatistics.java b/zc-business/src/main/java/com/zc/business/statistics/handler/RealtimeTrafficStatistics.java deleted file mode 100644 index 802e709e..00000000 --- a/zc-business/src/main/java/com/zc/business/statistics/handler/RealtimeTrafficStatistics.java +++ /dev/null @@ -1,79 +0,0 @@ -package com.zc.business.statistics.handler; - -import com.ruoyi.common.utils.DateUtils; -import com.zc.business.domain.DcTrafficSectionData; -import com.zc.business.enums.TrafficDataPeriodTypeEnum; -import org.springframework.util.CollectionUtils; - -import java.util.Collection; - -public class RealtimeTrafficStatistics { - - /** - * 对给定的交通数据集合进行统计分析,返回一个综合交通数据对象。 - * - * @param dataCollection 交通数据集合,不可为null或空。包含多个交通路段的详细数据。 - * @param trafficDataPeriodType 交通数据的时段类型,例如:小时、日、周等。 - * @return 综合交通数据对象,包含车流量总和、平均车速等统计结果。如果输入数据为空,则返回null。 - */ - public static DcTrafficSectionData trafficStatistics(Collection dataCollection, TrafficDataPeriodTypeEnum trafficDataPeriodType) { - - // 判断输入数据是否为空 - if (CollectionUtils.isEmpty(dataCollection)) { - return null; - } - - // 创建一个汇总统计用的对象 - DcTrafficSectionData aggregatedData = new DcTrafficSectionData(); - - // 初始化车流量总和 - int trafficVolume = 0; - // 初始化最大车流量 - int largeTrafficVolume = 0; - // 初始化计算平均车速所需的分子部分 - double numerator = 0; - - // 遍历原始数据列表,累加车流量并计算平均车速 - for (DcTrafficSectionData data: dataCollection) { - // 累加车流量 - trafficVolume += data.getTrafficVolume(); - // 累加最大车流量 - largeTrafficVolume += data.getLargeTrafficVolume(); - // 计算分子部分 - numerator += data.getAverageSpeed() * data.getTrafficVolume(); - } - - // 使用第一个数据项的信息填充汇总统计对象的基本属性(设备ID、桩号、方向) - DcTrafficSectionData firstDcTrafficSectionData = dataCollection.iterator().next(); - // 设备id - aggregatedData.setDeviceId(firstDcTrafficSectionData.getDeviceId()); - // 桩号 - aggregatedData.setStakeMark(firstDcTrafficSectionData.getStakeMark()); - // 道路方向 - aggregatedData.setDirection(firstDcTrafficSectionData.getDirection()); - // 上报时间 - aggregatedData.setReportTime(firstDcTrafficSectionData.getReportTime()); - - // 计算平均车速并设置到汇总统计对象中 - if (trafficVolume != 0) { - aggregatedData.setAverageSpeed((int) Math.round(numerator / trafficVolume)); - } else { - // 若车流量为0,则默认设置平均车速为0 - aggregatedData.setAverageSpeed(0); - } - // 时段类型 - aggregatedData.setPeriodType(trafficDataPeriodType); - // 设置统计时间 - aggregatedData.setStatisticalDate(firstDcTrafficSectionData.getStatisticalDate(), trafficDataPeriodType); - // 车流量 - aggregatedData.setTrafficVolume(trafficVolume); - // 大型车车流量 - aggregatedData.setLargeTrafficVolume(largeTrafficVolume); - // 更新或插入操作 - aggregatedData.setUpdateTime(DateUtils.getNowDate()); - // 生成主键 - aggregatedData.generateUniqueId(); - - return aggregatedData; - } -} diff --git a/zc-business/src/main/java/com/zc/business/statistics/handler/TrafficAnalysis.java b/zc-business/src/main/java/com/zc/business/statistics/handler/TrafficAnalysis.java new file mode 100644 index 00000000..657927ac --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/statistics/handler/TrafficAnalysis.java @@ -0,0 +1,635 @@ +package com.zc.business.statistics.handler; + +import cn.hutool.core.date.DateUtil; +import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper; +import com.ruoyi.common.core.redis.RedisCache; +import com.zc.business.constant.RedisKeyConstants; +import com.zc.business.constant.StakeMarkConstant; +import com.zc.business.domain.DcRoadSection; +import com.zc.business.domain.DcTrafficMetricsData; +import com.zc.business.domain.DcTrafficSectionData; +import com.zc.business.domain.DcTrafficVolumeForecast; +import com.zc.business.enums.*; +import com.zc.business.request.DcTrafficMetricsDataRequest; +import com.zc.business.service.DcTrafficVolumeForecastService; +import com.zc.business.utils.AlgorithmUtils; +import com.zc.business.utils.StakeMarkUtils; +import org.springframework.stereotype.Component; + +import javax.annotation.Resource; +import java.util.*; +import java.util.concurrent.atomic.AtomicInteger; +import java.util.concurrent.atomic.AtomicReference; +import java.util.stream.Collectors; + +/** + * 交通数据分析类 + * 用于对交通数据进行各种分析处理 + * + * @author xiepufeng + */ +@Component +public class TrafficAnalysis { + + @Resource + private RedisCache redisCache; + + @Resource + private DcTrafficVolumeForecastService dcTrafficVolumeForecastService; + + // 使用ConcurrentHashMap来缓存路段ID和设计交通量,以提高并发性能和减少数据库访问 + private static final Map> designTrafficVolumeCache = new HashMap<>(); + + // 缓存路段列表 + private static List orderedDcRoadSectionCache; + + /** + * 计算交通指标数据。 + * 根据提供的请求信息和路段数据列表,计算相应的交通指标。可以针对全程或指定路段进行统计,统计结果受请求中的分段标志、路段ID、方向和周期类型影响。 + * + * @param request 包含交通指标计算请求信息的对象,如是否分路段、路段ID、方向和周期类型。 + * @param trafficSectionDataList 包含多个路段数据的列表,用于计算交通指标。 + * @return 返回一个交通指标数据列表,每个列表项对应一个路段的交通指标数据。 + */ + public List calculateTrafficMetrics( + DcTrafficMetricsDataRequest request, + List trafficSectionDataList) { + + // 处理空列表的情况,如果列表为空,则直接返回一个空列表 + if (trafficSectionDataList.isEmpty()) { + return Collections.emptyList(); + } + + // 根据请求信息决定如何计算交通指标 + boolean segmented = request.isSegmented(); // 是否按分路段计算 + Long roadSectionId = request.getRoadSectionId(); // 指定的路段ID + Byte direction = request.getDirection(); // 行驶方向 + Byte periodType = request.getPeriodType(); // 周期类型 + + // 根据是否指定了路段ID,以及是否需要分路段统计来选择计算方法 + if (roadSectionId == null) { + // 如果没有指定路段ID,则根据是否分路段来调用不同的计算方法 + return segmented ? calculateFullSectionTrafficMetrics(trafficSectionDataList, direction, periodType) // 分路段统计 + : calculateFullTrafficMetrics(trafficSectionDataList, direction, periodType); // 全程统计 + } else { + // 如果指定了路段ID,则只统计该路段 + return calculateSectionTrafficMetrics(trafficSectionDataList, roadSectionId, direction, periodType); + } + } + + + /** + * 计算整个路的路段的交通指标数据。 + * + * @param sectionDataList 路段交通数据列表,包含各个监测点的交通数据。 + * @param direction 交通方向,表示数据是朝哪个方向收集的。 + * @param periodType 时期类型,标识数据是属于哪个时间段的。 + * @return 返回一个包含整个路段交通指标数据的列表。 + */ + private List calculateFullSectionTrafficMetrics( + List sectionDataList, + Byte direction, + Byte periodType + ) { + // 如果输入的路段交通数据列表为空或为空列表,直接返回空列表。 + if (sectionDataList == null || sectionDataList.isEmpty()) { + return Collections.emptyList(); + } + + // 将输入的路段交通数据列表按照路段ID进行分组,得到一个Map,key为路段ID,value为该路段的交通数据列表。 + Map> sectionDataMap = groupTrafficSectionDataByRoadSectionId(sectionDataList); + + // 统计每个路段的交通指标数据。 + List collectTrafficMetricsDataList = new ArrayList<>(); + + // 遍历整理后的路段交通数据,计算每个路段的交通指标。 + sectionDataMap.forEach((roadSectionId, trafficSectionData) -> collectTrafficMetricsDataList.addAll(calculateSectionTrafficMetrics(trafficSectionData, roadSectionId, direction, periodType))); + + // 返回计算得到的整个路段的交通指标数据列表。 + return collectTrafficMetricsDataList; + } + + /** + * 计算全程的交通指标数据。 + * + * @param trafficSectionDataList 交通路段数据列表,包含各个路段的交通统计信息。 + * @param direction 行驶方向,用于筛选数据。 + * @param periodType 统计周期类型,用于区分不同类型的交通数据。 + * @return 返回一个包含完整交通指标数据的列表,每个指标对应一个日期和行驶方向。 + */ + private List calculateFullTrafficMetrics( + List trafficSectionDataList, + Byte direction, + Byte periodType + ) { + // 检查输入数据是否为空,若为空则直接返回空列表 + if (trafficSectionDataList == null || trafficSectionDataList.isEmpty()) { + return Collections.emptyList(); + } + + // 根据统计日期和行驶方向对交通数据进行分组 + Map>> groupedByDateAndDirection = trafficSectionDataList.stream() + .collect(Collectors.groupingBy( + DcTrafficSectionData::getStatisticalDate, + Collectors.groupingBy(DcTrafficSectionData::getDirection) + )); + + List result = new ArrayList<>(); + + // 遍历分组后的数据,计算每组数据的交通指标 + groupedByDateAndDirection.forEach((date, dataMap) -> { + // 合并同一日期不同方向的所有数据 + List sectionDataList = new ArrayList<>(); + dataMap.forEach((key, value) -> sectionDataList.addAll(value)); + + // 根据合并后的数据计算交通指标 + DcTrafficMetricsData metricsData = new DcTrafficMetricsData(); + // 设置周期类型 + metricsData.setPeriodType(periodType); + // 设置统计日期 + metricsData.setStatisticalDate(date); + // 计算交通组成特征指数 + metricsData.setTrafficFeature(calculateTrafficFeature(sectionDataList)); + // 计算饱和度 + metricsData.setSaturationLevel(calculateFullSaturationDegree(sectionDataList, direction, periodType)); + // 计算通道拥挤度 + metricsData.setChannelCongestionLevel(calculateSectionChannelCongestionLevel(sectionDataList)); + // 计算路网整体拥堵的方法 + DcTrafficMetricsData trafficMetricsData = calculateRoadNetworkCongestion(sectionDataList); + // 拥堵路段数量 + metricsData.setCongestedSectionQuantity(trafficMetricsData.getCongestedSectionQuantity()); + // 返回拥堵里程 + metricsData.setCongestedDistance(trafficMetricsData.getCongestedDistance()); + // 计算路网拥堵指数 + metricsData.setRoadNetworkCongestionLevel(trafficMetricsData.getRoadNetworkCongestionLevel()); + + result.add(metricsData); + }); + + return result; + } + + + /** + * 计算路段交通指标的方法。 + * + * @param trafficSectionDataList 交通路段数据列表,包含各个时间段的交通数据。 + * @param roadSectionId 路段ID,用于指定需要计算交通指标的路段。 + * @param direction 方向标识,用于指定计算交通指标的方向。 + * @param periodType 时段类型,用于指定计算交通指标的时间段分类(如:年、季度、月、日)。 + * @return 返回一个交通指标数据列表,每个指标包含特定日期和方向的交通组成特征值、饱和度、通道拥挤度和断面交通量。 + */ + private List calculateSectionTrafficMetrics( + List trafficSectionDataList, + Long roadSectionId, + Byte direction, + Byte periodType + ) { + + // 检查输入数据列表是否为空,若为空则直接返回空列表 + if (trafficSectionDataList == null || trafficSectionDataList.isEmpty()) { + return Collections.emptyList(); + } + + // 根据统计日期和行驶方向对交通数据进行分组 + Map>> groupedByDateAndDirection = trafficSectionDataList.stream() + .collect(Collectors.groupingBy( + DcTrafficSectionData::getStatisticalDate, + Collectors.groupingBy(DcTrafficSectionData::getDirection) + )); + + List result = new ArrayList<>(); + + // 遍历分组后的数据,计算每组的交通指标 + groupedByDateAndDirection.forEach((date, dataMap) -> { + // 合并同一日期不同方向的所有数据 + List sectionDataList = new ArrayList<>(); + dataMap.forEach((key, value) -> sectionDataList.addAll(value)); + + // 根据合并后的数据计算交通指标 + DcTrafficMetricsData metricsData = new DcTrafficMetricsData(); + // 设置路段ID + metricsData.setRoadSectionId(roadSectionId); + // 时段类型 + metricsData.setPeriodType(periodType); + // 设置方向 + metricsData.setDirection(direction); + // 设置统计日期 + metricsData.setStatisticalDate(date); + // 计算交通组成特征指数 + metricsData.setTrafficFeature(calculateTrafficFeature(sectionDataList)); + // 计算饱和度 + metricsData.setSaturationLevel(calculateSectionSaturationDegree(sectionDataList, roadSectionId, direction, periodType, DateUtil.year(date))); + // 计算通道拥挤度 + metricsData.setChannelCongestionLevel(calculateSectionChannelCongestionLevel(sectionDataList)); + // 计算断面交通量 + metricsData.setTrafficVolume(calculateSectionTrafficVolume(dataMap)); + result.add(metricsData); + }); + + return result; + } + + + /** + * 计算交通组成特征值 + * + * @param trafficSectionData 交通数据集合 + * @return 大车流量在总车流量中占比的百分比,如果数据集合为空或总流量为0,则返回null + */ + private Integer calculateTrafficFeature(List trafficSectionData) { + // 检查数据集合是否为空,是则返回 0 + if (trafficSectionData == null || trafficSectionData.isEmpty()) { + return null; + } + + // 初始化总流量和大车流量总和 + int totalTrafficVolume = 0; + int totalLargeTrafficVolume = 0; + + // 使用Stream API计算大流量和总流量的累加值,同时处理了可能的NullPointerException + for (DcTrafficSectionData data : trafficSectionData) { + totalLargeTrafficVolume += data.getLargeTrafficVolume(); + totalTrafficVolume += data.getTrafficVolume(); + } + + // 总流量为0时,返回0 + if (totalTrafficVolume == 0) { + return null; + } + + // 计算大流量占比的百分比并返回 + double percentage = (double) totalLargeTrafficVolume / totalTrafficVolume * 100; + return (int) Math.round(percentage); + } + + /** + * 计算整个路网的饱和度程度。 + * + * @param trafficSectionDataList 交通路段数据列表 + * @param direction 行驶方向,用字节表示。 + * @param periodType 时期类型,用于确定是哪个时间段的交通数据(如:年、季度、月、日) + * @return 计算得到的整个路段平均饱和度,如果输入数据为空则返回null。 + */ + private Integer calculateFullSaturationDegree(List trafficSectionDataList, Byte direction, Byte periodType) { + + // 检查输入的数据映射是否为空,若为空则直接返回null + if (trafficSectionDataList == null || trafficSectionDataList.isEmpty()) { + return null; + } + + // 将输入的路段交通数据列表按照路段ID进行分组,得到一个Map,key为路段ID,value为该路段的交通数据列表。 + Map> trafficSectionMap = groupTrafficSectionDataByRoadSectionId(trafficSectionDataList); + + + List sectionSaturationDegreeList = new ArrayList<>(); + + // 遍历每个路段的数据列表,计算并收集每个路段的饱和度 + trafficSectionMap.forEach((roadSectionId, sectionDataList) -> { + if (!sectionDataList.isEmpty()) { + Integer year = DateUtil.year(sectionDataList.get(0).getStatisticalDate()); + Integer saturationDegree = calculateSectionSaturationDegree(sectionDataList, roadSectionId, direction, periodType, year); + sectionSaturationDegreeList.add(saturationDegree); + } + }); + + // 计算所有路段饱和度的平均值 + double averageSaturationDegree = sectionSaturationDegreeList.stream() + .mapToDouble(Integer::doubleValue) + .average() + .orElse(0.0); + + // 将平均饱和度值四舍五入为整数后返回 + return (int) Math.round(averageSaturationDegree); + } + + + + + /** + * 计算路段饱和度 + * + * @param trafficSectionData 交通路段数据列表 + * @param roadSectionId 路段ID,用于标识具体的路段 + * @param direction 行驶方向,用于确定交通量是否需要折半计算 + * @param periodType 时期类型,用于确定是哪个时间段的交通数据(如:年、季度、月、日) + * @param year 年份,用于确定是哪年的交通数据 + * @return 返回计算得到的路段饱和度,饱和度为交通量与设计交通量的比值乘以100 + */ + private Integer calculateSectionSaturationDegree(List trafficSectionData, Long roadSectionId, Byte direction, Byte periodType, Integer year) { + + // 检查数据集合是否为空,是则返回 0 + if (trafficSectionData == null || trafficSectionData.isEmpty()) { + return null; + } + + // 获取设计交通量 + Integer designTrafficVolume = getDesignTrafficVolume(roadSectionId, periodType, year); + + // 如果指定了行驶方向,设计交通量需要折半计算 + if (direction != null) { + designTrafficVolume = (int) Math.round(designTrafficVolume * 0.5); + } + + // 获取当前交通量的平均值 + double averageWeightedVolume = trafficSectionData.stream() + .mapToDouble(data -> + data.getLargeTrafficVolume() * VehicleLoadSaturationFactorEnum.LARGE_VEHICLE.getConversionFactor() + + (data.getTrafficVolume() - data.getLargeTrafficVolume())) + .average() + .orElse(0.0); + + // 计算饱和度 + double saturationDegree = averageWeightedVolume / designTrafficVolume * 100; + return (int) Math.round(saturationDegree); + } + + /** + * 计算路段通道拥挤度 + * + * @param trafficSectionDataList 路段交通数据列表,包含多个路段的交通情况数据 + * @return 返回计算得到的路段通道拥挤度,如果输入数据为空则返回0 + */ + private Integer calculateSectionChannelCongestionLevel(List trafficSectionDataList) { + if (trafficSectionDataList == null || trafficSectionDataList.isEmpty()) { + return 0; // 列表为空时返回0 + } + + double totalWeightedSpeed = 0; // 总的加权速度 + int totalVolume = 0; // 总的车流量,作为权重 + + // 遍历路段数据,计算加权速度和总车流量 + for (DcTrafficSectionData data : trafficSectionDataList) { + if (data.getTrafficVolume() != null && data.getAverageSpeed() != null) { + totalWeightedSpeed += data.getTrafficVolume() * data.getAverageSpeed(); // 累加加权速度 + totalVolume += data.getTrafficVolume(); // 累加权重 + } + } + + if (totalVolume == 0) { + return 0; // 防止除以0的情况 + } + + // 计算并返回加权平均速度 + return (int) Math.round(totalWeightedSpeed / totalVolume); + } + + /** + * 计算路网整体拥堵的方法。 + * + * @param trafficSectionDataList 交通路段数据列表,包含各个路段的交通状况和里程信息。 + * @return DcTrafficMetricsData 包含路网整体拥堵指数、拥堵路段数量和拥堵里程的数据对象。 + */ + public DcTrafficMetricsData calculateRoadNetworkCongestion(List trafficSectionDataList) { + + DcTrafficMetricsData metricsData = new DcTrafficMetricsData(); + + // 如果输入的交通路段数据为空或为空列表,直接返回一个不含数据的metricsData对象 + if (trafficSectionDataList == null || trafficSectionDataList.isEmpty()) { + return metricsData; + } + + // 根据行驶方向对交通数据进行分组,以便分别计算每个方向的拥堵情况 + Map> groupedByDirection = trafficSectionDataList.stream() + .collect(Collectors.groupingBy(DcTrafficSectionData::getDirection)); + + // 总里程,基于道路方向的数量乘以单方向的总里程 + int totalDistance = StakeMarkConstant.calculateRoadLength() * groupedByDirection.size(); + // 总拥堵里程,使用AtomicInteger以支持在并发环境中进行累加操作 + AtomicInteger totalCongestionDistance = new AtomicInteger(); + // 拥堵路段数量 + AtomicInteger congestedSectionQuantity = new AtomicInteger(); + + // 遍历每个方向的数据,计算总拥堵里程 + groupedByDirection.forEach((directionData, trafficSectionList) -> { + + List sortedList; + + // 根据行驶方向,对交通路段数据进行排序,上行方向逆序,下行方向正序 + if (directionData.equals(LaneDirectionEnum.UPWARD.getValue())) { + sortedList = trafficSectionList.stream() + .sorted(Comparator.comparing(DcTrafficSectionData::getStakeMark).reversed()) + .collect(Collectors.toList()); + } else { + sortedList = trafficSectionList.stream() + .sorted(Comparator.comparing(DcTrafficSectionData::getStakeMark)) + .collect(Collectors.toList()); + } + + // 用于计算拥堵里程的辅助变量 + int previousStakeMark = 0; + int previousAverageSpeed = 0; + int defaultCongestionDistance = 0; + + // 遍历排序后的路段数据,计算每个路段的拥堵里程,并累加到总拥堵里程中 + for (DcTrafficSectionData dcTrafficSectionData : sortedList) { + int averageSpeed = dcTrafficSectionData.getAverageSpeed(); + int stakeMark = dcTrafficSectionData.getStakeMark(); + + // 对于不拥堵的路段,累加之前计算的默认拥堵距离 + if (!ChannelCongestionLevelEnum.isMediumOrSevereCongestion(averageSpeed)) { + totalCongestionDistance.addAndGet(defaultCongestionDistance); + previousStakeMark = stakeMark; + defaultCongestionDistance = 0; + continue; + } + + // 根据平均速度计算默认拥堵距离 + defaultCongestionDistance = ChannelCongestionLevelEnum.fromSpeed(averageSpeed).getDefaultCongestionDistance(); + + // 如果之前已经有路段被计算过,则根据两个路段之间的距离和默认拥堵距离,计算实际应累加的拥堵距离 + if (previousAverageSpeed != 0) { + int congestionDistance = Math.abs(stakeMark - previousStakeMark); + if (congestionDistance > StakeMarkConstant.MAX_INTERVAL_MILLIMETER_WAVE_RADAR) { + totalCongestionDistance.addAndGet(defaultCongestionDistance); + } else { + totalCongestionDistance.addAndGet(congestionDistance); + congestedSectionQuantity.addAndGet(1); + } + } + + // 更新辅助变量以备后续计算 + previousStakeMark = stakeMark; + previousAverageSpeed = averageSpeed; + } + }); + + // 计算并返回路网整体的拥堵指数 + metricsData.setRoadNetworkCongestionLevel(Math.round((float) totalCongestionDistance.get() / totalDistance * 100)); + // 返回拥堵路段数量 + metricsData.setCongestedSectionQuantity(congestedSectionQuantity.get()); + // 返回拥堵里程 + metricsData.setCongestedDistance(totalCongestionDistance.get()); + + return metricsData; + } + + + + /** + * 计算路段交通量 + * + * @param trafficSectionData 路段交通数据的映射,key为方向,value为该方向上的路段交通数据列表 + * @return 返回计算出的总交通量,如果输入数据为空则返回null + */ + private Integer calculateSectionTrafficVolume(Map> trafficSectionData) { + // 检查输入数据是否为空,为空则直接返回0 + if (trafficSectionData == null || trafficSectionData.isEmpty()) { + return null; + } + + // 使用AtomicReference来存放最终的交通量,确保线程安全 + AtomicReference trafficVolume = new AtomicReference<>(0); + + // 遍历每个方向的路段数据,累加其交通量 + trafficSectionData.forEach((direction, trafficSectionList) -> { + // 对每个方向上的路段数据,提取交通量并找出最大值,然后累加到总交通量上 + trafficVolume.updateAndGet(v -> v + trafficSectionList.stream() + .map(DcTrafficSectionData::getTrafficVolume) // 提取每个路段数据的交通量 + .max(Integer::compareTo).orElse(0)); // 找出最大交通量,若无则为0 + }); + + // 返回最终计算出的总交通量 + return trafficVolume.get(); + } + + /** + * 根据道路路段ID和周期类型、年份,获取设计交通量。 + * + * @param roadSectionId 道路路段的ID,如果为null则默认为0。 + * @param periodType 交通数据的周期类型,如果为null则默认计算五分钟内的交通量。 + * 周期类型包括年、季度、月以及其他默认情况(日)。 + * @param year 年份,用于查询指定年份的设计交通量。 + * @return 根据给定的路段ID和周期类型、年份计算出的设计交通量。 + */ + private Integer getDesignTrafficVolume(Long roadSectionId, Byte periodType, Integer year) { + + // 处理null的roadSectionId,默认为0 + if (roadSectionId == null) { + roadSectionId = 0L; + } + + Integer designTrafficVolume; + + // 使用缓存来存储每年的设计交通量,减少数据库查询 + HashMap yearDesignTrafficVolumeCache = designTrafficVolumeCache.computeIfAbsent(roadSectionId, k -> new HashMap<>()); + + // 判断缓存中是否已存在当前年份的设计交通量,如果存在直接使用,否则进行查询 + if (yearDesignTrafficVolumeCache.containsKey(year)) { + designTrafficVolume = yearDesignTrafficVolumeCache.get(year); + } else { + // 构建查询条件,并根据条件查询数据库获取设计交通量 + LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); + queryWrapper.eq(DcTrafficVolumeForecast::getRoadSectionId, roadSectionId); + queryWrapper.eq(DcTrafficVolumeForecast::getYear, year); + + DcTrafficVolumeForecast dcTrafficVolumeForecast = dcTrafficVolumeForecastService.getOne(queryWrapper); + designTrafficVolume = dcTrafficVolumeForecast.getDesignTrafficVolume(); + yearDesignTrafficVolumeCache.put(year, designTrafficVolume); + } + + // 根据周期类型计算不同周期的交通量,默认为五分钟交通量 + if (periodType == null) { + return Math.round(designTrafficVolume / ((float) 24 * 60 / 5)); + } + + TrafficDataPeriodTypeEnum typeEnum = TrafficDataPeriodTypeEnum.valueOfCode(periodType); + + switch (typeEnum) { + case YEAR: + return designTrafficVolume * 365; // 年交通量 + case QUARTER: + return designTrafficVolume * 91; // 季度交通量 + case MONTH: + return designTrafficVolume * 31; // 月交通量 + default: + return designTrafficVolume; // 默认为日交通量 + } + } + + /** + * 获取有序的DcRoadSection缓存列表。 + * 该方法首先检查有序的DcRoadSection缓存是否已经存在,如果存在直接返回缓存。如果缓存不存在,则从Redis缓存中获取所有路段信息, + * 根据路段的起止桩号进行排序,然后将排序后的结果存储到有序的DcRoadSection缓存中,并返回该缓存列表。 + * + * @return 返回一个按路段起止桩号顺序排序的DcRoadSection列表。 + */ + private List getOrderedDcRoadSectionCache() { + + if (orderedDcRoadSectionCache != null) { + return orderedDcRoadSectionCache; // 直接返回已缓存的有序路段信息 + } + + // 从Redis缓存中获取所有路段信息,并根据路段起止桩号进行排序 + Map dcRoadSectionMap = redisCache.getCacheMapValue(RedisKeyConstants.DC_ROAD_SECTION); + + List orderedDcRoadSection = dcRoadSectionMap.values().stream() + .sorted(Comparator.comparing((dcRoadSection) -> StakeMarkUtils.stakeMarkToInt(dcRoadSection.getEndStakeMark()) + StakeMarkUtils.stakeMarkToInt(dcRoadSection.getStartStakeMark()))) + .collect(Collectors.toList()); + + orderedDcRoadSectionCache = orderedDcRoadSection; // 将排序后的路段信息缓存起来 + + return orderedDcRoadSection; + } + + /** + * 使用二分查找在已排序的路段时间对象列表中找到对应的路段ID。 + * + * @param sortedRoadSectionObjects 已排序的路段时间对象列表,列表中的对象应实现了Comparable接口。 + * @param dcTrafficSectionData 需要查找的交通数据段对象,包含桩号信息。 + * @return 找到的路段ID,如果没有找到则返回特定的标识(如-1)。 + */ + private int findSectionIdByBinarySearch(List sortedRoadSectionObjects, DcTrafficSectionData dcTrafficSectionData) { + // 使用AlgorithmUtils的二分查找方法进行查找,比较函数通过lambda表达式定义 + return AlgorithmUtils.binarySearch(sortedRoadSectionObjects, dcTrafficSectionData, (roadSection, trafficSectionData) -> { + DcRoadSection dcRoadSection = (DcRoadSection) roadSection; + Integer startStakeMark = StakeMarkUtils.stakeMarkToInt(dcRoadSection.getStartStakeMark()); + Integer endStakeMark = StakeMarkUtils.stakeMarkToInt(dcRoadSection.getEndStakeMark()); + DcTrafficSectionData trafficSectionData1 = (DcTrafficSectionData) trafficSectionData; + Integer stakeMark = trafficSectionData1.getStakeMark(); + + // 比较交通数据的桩号是否位于路段的起始桩号和结束桩号之间,以判断数据是否属于该路段 + if (stakeMark >= startStakeMark && stakeMark <= endStakeMark) { + return 0; // 属于该路段,返回0表示找到 + } else if (stakeMark < startStakeMark) { + return 1; // 桩号小于起始桩号,说明要查找的路段在当前路段的左侧 + } else { + return -1; // 桩号大于结束桩号,说明要查找的路段在当前路段的右侧 + } + }); + } + + /** + * 将交通数据按照路段ID分组。 + * + * @param trafficSectionDataList 交通路段数据列表,每个数据包含路段相关信息。 + * @return 分组后的交通路段数据,以路段ID为键,对应路段的所有交通数据为值。 + */ + private Map> groupTrafficSectionDataByRoadSectionId(List trafficSectionDataList) { + // 获取已排序的路段信息缓存。 + List sortedRoadSections = getOrderedDcRoadSectionCache(); + + // 创建一个对象列表,用于二分查找。 + List sortedRoadSectionObjects = new ArrayList<>(sortedRoadSections.size()); + sortedRoadSectionObjects.addAll(sortedRoadSections); + + // 使用HashMap来组织路段交通数据,以便于后续处理。 + Map> sectionDataMap = new HashMap<>(); + + // 遍历输入的路段交通数据列表,将数据按照路段进行组织。 + for (DcTrafficSectionData trafficSectionData : trafficSectionDataList) { + // 使用二分查找来找到当前交通数据所属的路段。 + int index = findSectionIdByBinarySearch(sortedRoadSectionObjects, trafficSectionData); + // 如果找到对应的路段,则将交通数据添加到该路段的数据列表中。 + if (index > -1) { + DcRoadSection dcRoadSection = sortedRoadSections.get(index); + List dcTrafficSectionList = sectionDataMap.putIfAbsent(dcRoadSection.getId(), new ArrayList<>()); + dcTrafficSectionList.add(trafficSectionData); + } + } + + return sectionDataMap; + } + + +} diff --git a/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficSectionDataServiceImpl.java b/zc-business/src/main/java/com/zc/business/statistics/handler/TrafficStatistics.java similarity index 67% rename from zc-business/src/main/java/com/zc/business/service/impl/DcTrafficSectionDataServiceImpl.java rename to zc-business/src/main/java/com/zc/business/statistics/handler/TrafficStatistics.java index 57b703a3..dbc9a939 100644 --- a/zc-business/src/main/java/com/zc/business/service/impl/DcTrafficSectionDataServiceImpl.java +++ b/zc-business/src/main/java/com/zc/business/statistics/handler/TrafficStatistics.java @@ -1,42 +1,37 @@ -package com.zc.business.service.impl; +package com.zc.business.statistics.handler; import cn.hutool.core.date.DateUtil; import com.alibaba.fastjson.JSONArray; import com.alibaba.fastjson.JSONObject; -import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper; -import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl; import com.ruoyi.common.core.redis.RedisCache; +import com.ruoyi.common.utils.DateUtils; import com.zc.business.constant.RedisKeyConstants; -import com.zc.business.constant.StatisticalRecoveryOffsetTime; import com.zc.business.controller.DcDeviceController; import com.zc.business.domain.DcDevice; import com.zc.business.domain.DcTrafficSectionData; import com.zc.business.enums.*; -import com.zc.business.statistics.cache.*; import com.zc.business.mapper.DcTrafficSectionDataMapper; -import com.zc.business.service.DcTrafficSectionDataService; -import com.zc.business.statistics.handler.RealtimeTrafficStatistics; +import com.zc.business.statistics.cache.*; import com.zc.common.core.httpclient.exception.HttpException; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.scheduling.annotation.Scheduled; -import org.springframework.stereotype.Service; +import org.springframework.stereotype.Component; +import org.springframework.util.CollectionUtils; -import javax.annotation.PostConstruct; import javax.annotation.Resource; import java.io.IOException; import java.util.*; import java.util.function.Consumer; /** - * 交通断面数据服务实现类,负责处理实时设备消息、缓存数据、定时任务以及数据保存等功能。 + * 交通数据统计处理类。 * + * 该类提供了一系列方法用于对交通数据进行统计分析,包括车流量总和、平均车速等。 * @author xiepufeng */ -@Service -public class DcTrafficSectionDataServiceImpl - extends ServiceImpl - implements DcTrafficSectionDataService { +@Component +public class TrafficStatistics { // 日志记录器 protected final Logger logger = LoggerFactory.getLogger(this.getClass()); @@ -50,35 +45,6 @@ public class DcTrafficSectionDataServiceImpl @Resource private DcDeviceController dcDeviceController; - /** - * 初始化方法,用于在对象创建后恢复各种周期的交通数据缓存。 - * 该方法标注了@PostConstruct注解,确保在依赖注入完成后调用。 - */ - @PostConstruct - public void init() { - recoveryDailyCache(); // 从es中恢复当天交通数据缓存 - recoveryMonthlyCache(); // 恢复每月交通数据缓存 - recoveryQuarterlyCache(); // 恢复每季度交通数据缓存 - recoveryYearlyCache(); // 恢复每年交通数据缓存 - } - - /** - * 处理实时接收到的一类交流站设备消息,并将其转换为交通断面统计数据对象并缓存。 - * - * @param msg 设备发送的JSON格式实时消息 - */ - @Override - public void processRealtimeOneStopMessage(JSONObject msg) { - - // 1. 将设备消息转换为交通断面数据统计定义对象 - List dcTrafficSectionDataList = convertToTrafficStatistics(msg, DeviceDataCategory.REAL_TIME); - - if (dcTrafficSectionDataList != null && !dcTrafficSectionDataList.isEmpty()) { - // 2. 将转换后的数据添加到缓存中 - dcTrafficSectionDataList.forEach(DailyTrafficStatisticsCache::addCacheData); - } - } - /** * 定义每小时第20分钟执行的任务,用于清除过期缓存数据并将缓存中的数据整合后保存至数据库。 */ @@ -103,32 +69,6 @@ public class DcTrafficSectionDataServiceImpl persistAggregatedData(YearlyTrafficStatisticsCache.getCache(), TrafficDataPeriodTypeEnum.YEAR, (a) -> {}); } - /** - * 恢复每日缓存的函数。 - * 该方法尝试从物联平台获取所有设备信息,并对这些信息进行处理。 - * 如果获取信息失败或处理过程中发生异常,则记录错误信息。 - */ - private void recoveryDailyCache() { - - try { - // 尝试从指定产品ID获取设备信息 - Map oneStopDeviceMap = dcDeviceController.getDeviceByProductId(IotProductEnum.ONE_STOP_PRODUCT.value()); - - // 检查获取的设备信息是否为空 - if (oneStopDeviceMap == null || oneStopDeviceMap.get("data") == null) { - logger.error("获取一类交通量调查站设备数据失败,产品id:{}", IotProductEnum.ONE_STOP_PRODUCT.value()); - return; - } - - // 将获取的设备信息转换为JSON数组,并遍历处理每个设备的数据 - JSONArray deviceJsonArray = JSONArray.parseArray(oneStopDeviceMap.get("data").toString()); - deviceJsonArray.forEach(this::processDeviceData); - - } catch (HttpException | IOException e) { - // 记录处理设备数据时发生的异常 - logger.error("处理设备数据时发生异常", e); - } - } /** * 处理设备数据的函数。 @@ -137,7 +77,7 @@ public class DcTrafficSectionDataServiceImpl * * @param deviceObject 设备对象,需要是一个JSONObject,包含设备信息。 */ - private void processDeviceData(Object deviceObject) { + public void processDeviceData(Object deviceObject) { JSONObject deviceJsonObject = (JSONObject)deviceObject; // 提取设备ID String deviceId = deviceJsonObject.getString("id"); @@ -172,21 +112,12 @@ public class DcTrafficSectionDataServiceImpl * @return HashMap 包含查询条件的HashMap对象。 */ private HashMap buildPropertiesRequiredParameter() { - - // 获取数据统计的最大日期 - Date maxStatisticalDate = dcTrafficSectionDataMapper.getMaxStatisticalDate(); - - // 如果最大统计日期为null,则计算默认的最大统计日期 - if (maxStatisticalDate == null) { - maxStatisticalDate = DateUtil.offsetDay(new Date(), StatisticalRecoveryOffsetTime.TRAFFIC_SECTION_DATA_OFFSET_DAY); - } - HashMap props = new HashMap<>(); // 设置查询条件的键为“timestamp$BTW”,表示时间戳在一定范围内 props.put("terms[0].column", "timestamp$BTW"); ArrayList dateList = new ArrayList<>(); // 添加当前日期的开始和结束时间到列表,用于设定时间范围 - dateList.add(DateUtil.beginOfDay(maxStatisticalDate).toString()); + dateList.add(DateUtil.beginOfMonth(new Date()).toString()); dateList.add(DateUtil.endOfDay(new Date()).toString()); // 将日期列表以逗号分隔并设置为查询条件的值 props.put("terms[0].value", String.join(",", dateList)); @@ -224,7 +155,7 @@ public class DcTrafficSectionDataServiceImpl JSONObject propertyJsonObject = (JSONObject)propertyObject; // 将设备消息转换为交通断面数据统计定义对象 - List dcTrafficSectionDataList = convertToTrafficStatistics(propertyJsonObject, DeviceDataCategory.HISTORY); + List dcTrafficSectionDataList = convertToTrafficStatistics(propertyJsonObject, DeviceDataCategoryEnum.HISTORY); // 如果转换结果非空且不为空列表,则将转换后的数据添加到缓存中 if (dcTrafficSectionDataList != null && !dcTrafficSectionDataList.isEmpty()) { @@ -235,49 +166,6 @@ public class DcTrafficSectionDataServiceImpl }); } - /** - * 恢复每月交通数据缓存的方法。 - * 通过查询当前月份至今的每日交通数据,并将其添加到每月交通统计缓存中。 - */ - private void recoveryMonthlyCache() { - // 构建查询条件,查询当前月份至今的每日交通数据 - LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); - queryWrapper.eq(DcTrafficSectionData::getPeriodType, TrafficDataPeriodTypeEnum.DAY); - queryWrapper.between(DcTrafficSectionData::getStatisticalDate, DateUtil.beginOfMonth(new Date()), new Date()); - List dcTrafficSectionDataList = this.list(queryWrapper); - // 遍历查询结果,将每日数据添加到每月交通统计缓存 - dcTrafficSectionDataList.forEach(MonthlyTrafficStatisticsCache::addCacheData); - } - - /** - * 恢复每季度交通数据缓存的方法。 - * 通过查询当前季度至今的每月交通数据,并将其添加到每季度交通统计缓存中。 - */ - private void recoveryQuarterlyCache() { - // 构建查询条件,查询当前季度至今的每月交通数据 - LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); - queryWrapper.eq(DcTrafficSectionData::getPeriodType, TrafficDataPeriodTypeEnum.MONTH); - queryWrapper.between(DcTrafficSectionData::getStatisticalDate, DateUtil.beginOfQuarter(new Date()), new Date()); - List dcTrafficSectionDataList = this.list(queryWrapper); - // 遍历查询结果,将每月数据添加到每季度交通统计缓存 - dcTrafficSectionDataList.forEach(QuarterlyTrafficStatisticsCache::addCacheData); - } - - /** - * 恢复每年交通数据缓存的方法。 - * 通过查询当前年份至今的每季度交通数据,并将其添加到每年交通统计缓存中。 - */ - private void recoveryYearlyCache() { - // 构建查询条件,查询当前年份至今的每季度交通数据 - LambdaQueryWrapper queryWrapper = new LambdaQueryWrapper<>(); - queryWrapper.eq(DcTrafficSectionData::getPeriodType, TrafficDataPeriodTypeEnum.QUARTER); - queryWrapper.between(DcTrafficSectionData::getStatisticalDate, DateUtil.beginOfYear(new Date()), new Date()); - List dcTrafficSectionDataList = this.list(queryWrapper); - // 遍历查询结果,将每季度数据添加到每年交通统计缓存 - dcTrafficSectionDataList.forEach(YearlyTrafficStatisticsCache::addCacheData); - } - - /** * 将设备消息转换为交通断面数据统计定义对象 * @@ -286,11 +174,11 @@ public class DcTrafficSectionDataServiceImpl * @return 转换后的交通断面数据统计定义对象 */ - public List convertToTrafficStatistics(JSONObject msg, DeviceDataCategory category) { + public List convertToTrafficStatistics(JSONObject msg, DeviceDataCategoryEnum category) { // 获取属性 JSONObject property; - if (category == DeviceDataCategory.REAL_TIME) { + if (category == DeviceDataCategoryEnum.REAL_TIME) { JSONObject properties = msg.getJSONObject("properties"); // 属性数据 @@ -358,16 +246,16 @@ public class DcTrafficSectionDataServiceImpl * @param reportTime 报告时间,标识数据的时间戳。 * @return 返回一个Map,包含上行和下行的交通段数据。 */ - private Map processLaneData(JSONArray lanes, DcDevice dcDevice, Date reportTime) { + private Map processLaneData(JSONArray lanes, DcDevice dcDevice, Date reportTime) { - Map resultMap = new HashMap<>(); + Map resultMap = new HashMap<>(); // 初始化上行和下行的交通段数据 DcTrafficSectionData upwardData = new DcTrafficSectionData(); DcTrafficSectionData downwardData = new DcTrafficSectionData(); - initializeTrafficSectionData(upwardData, dcDevice, reportTime, LaneDirection.UPWARD); - initializeTrafficSectionData(downwardData, dcDevice, reportTime, LaneDirection.DOWNWARD); + initializeTrafficSectionData(upwardData, dcDevice, reportTime, LaneDirectionEnum.UPWARD); + initializeTrafficSectionData(downwardData, dcDevice, reportTime, LaneDirectionEnum.DOWNWARD); // 初始化上行和下行的车流量 int upwardTrafficVolume = 0, downwardTrafficVolume = 0; @@ -405,8 +293,8 @@ public class DcTrafficSectionDataServiceImpl setTrafficSectionData(downwardData, downwardTrafficVolume, downwardCumulativeAverageSpeed, downwardLargeTrafficVolume); // 将上行和下行的交通段数据放入结果映射中 - resultMap.put(LaneDirection.UPWARD, upwardData); - resultMap.put(LaneDirection.DOWNWARD, downwardData); + resultMap.put(LaneDirectionEnum.UPWARD, upwardData); + resultMap.put(LaneDirectionEnum.DOWNWARD, downwardData); return resultMap; } @@ -419,7 +307,7 @@ public class DcTrafficSectionDataServiceImpl * @param reportTime 数据上报时间 * @param direction 车道方向 */ - private void initializeTrafficSectionData(DcTrafficSectionData data, DcDevice dcDevice, Date reportTime, LaneDirection direction) { + private void initializeTrafficSectionData(DcTrafficSectionData data, DcDevice dcDevice, Date reportTime, LaneDirectionEnum direction) { // 设置设备id data.setDeviceId(dcDevice.getId()); @@ -464,23 +352,23 @@ public class DcTrafficSectionDataServiceImpl private int calculateCumulativeAverageSpeed(JSONObject laneData) { // 根据laneData中的数据计算累计平均速度 // 累加平均速度(中小客车) - return laneData.getInteger("trafficNumberOfInAndSmall") * laneData.getInteger("inAndSmallAverageVehicleSpeed") + - // 累加平均速度(小型货车) - laneData.getInteger("trafficVolumeOfSmallTrucks") * laneData.getInteger("smallTrucksAverageVehicleSpeed") + - // 累加平均速度(大客车) - laneData.getInteger("busTrafficVolume") * laneData.getInteger("averageSpeedOfBus") + - // 累加平均速度(中型货车) - laneData.getInteger("mediumTruckTrafficVolume") * laneData.getInteger("averageSpeedOfMediumSizeTrucks") + - // 累加平均速度(大型货车) - laneData.getInteger("largeTruckTrafficVolume") * laneData.getInteger("averageSpeedOfLargeTrucks") + - // 累加平均速度(特大型货车) - laneData.getInteger("extraLargeTrucksTrafficVolume") * laneData.getInteger("averageSpeedOfExtraLargeTrucks") + - // 累加平均速度(集装箱车) - laneData.getInteger("containerTruckTrafficVolume") * laneData.getInteger("averageSpeedOfContainerTruck") + - // 累加平均速度(拖拉机) - laneData.getInteger("tractorTrafficVolume") * laneData.getInteger("averageSpeedOfTractor") + - // 累加平均速度(摩托车) - laneData.getInteger("motorcycleTrafficVolume") * laneData.getInteger("averageSpeedOfMotorcycle"); + return laneData.getInteger("trafficNumberOfInAndSmall") * laneData.getInteger("inAndSmallAverageVehicleSpeed") + + // 累加平均速度(小型货车) + laneData.getInteger("trafficVolumeOfSmallTrucks") * laneData.getInteger("smallTrucksAverageVehicleSpeed") + + // 累加平均速度(大客车) + laneData.getInteger("busTrafficVolume") * laneData.getInteger("averageSpeedOfBus") + + // 累加平均速度(中型货车) + laneData.getInteger("mediumTruckTrafficVolume") * laneData.getInteger("averageSpeedOfMediumSizeTrucks") + + // 累加平均速度(大型货车) + laneData.getInteger("largeTruckTrafficVolume") * laneData.getInteger("averageSpeedOfLargeTrucks") + + // 累加平均速度(特大型货车) + laneData.getInteger("extraLargeTrucksTrafficVolume") * laneData.getInteger("averageSpeedOfExtraLargeTrucks") + + // 累加平均速度(集装箱车) + laneData.getInteger("containerTruckTrafficVolume") * laneData.getInteger("averageSpeedOfContainerTruck") + + // 累加平均速度(拖拉机) + laneData.getInteger("tractorTrafficVolume") * laneData.getInteger("averageSpeedOfTractor") + + // 累加平均速度(摩托车) + laneData.getInteger("motorcycleTrafficVolume") * laneData.getInteger("averageSpeedOfMotorcycle"); } /** @@ -517,7 +405,7 @@ public class DcTrafficSectionDataServiceImpl if (data.isStored()) { continue; } - DcTrafficSectionData aggregatedData = RealtimeTrafficStatistics.trafficStatistics(data.getData(), periodType); + DcTrafficSectionData aggregatedData = trafficStatistics(data.getData(), periodType); if (dcTrafficSectionDataMapper.insertOrUpdate(aggregatedData)) { // 设置数据已存储状态 data.setStored(true); @@ -527,4 +415,71 @@ public class DcTrafficSectionDataServiceImpl } } + /** + * 对给定的交通数据集合进行统计分析,返回一个综合交通数据对象。 + * + * @param dataCollection 交通数据集合,不可为null或空。包含多个交通路段的详细数据。 + * @param trafficDataPeriodType 交通数据的时段类型,例如:小时、日、周等。 + * @return 综合交通数据对象,包含车流量总和、平均车速等统计结果。如果输入数据为空,则返回null。 + */ + public DcTrafficSectionData trafficStatistics(Collection dataCollection, TrafficDataPeriodTypeEnum trafficDataPeriodType) { + + // 判断输入数据是否为空 + if (CollectionUtils.isEmpty(dataCollection)) { + return null; + } + + // 创建一个汇总统计用的对象 + DcTrafficSectionData aggregatedData = new DcTrafficSectionData(); + + // 初始化车流量总和 + int trafficVolume = 0; + // 初始化最大车流量 + int largeTrafficVolume = 0; + // 初始化计算平均车速所需的分子部分 + double numerator = 0; + + // 遍历原始数据列表,累加车流量并计算平均车速 + for (DcTrafficSectionData data: dataCollection) { + // 累加车流量 + trafficVolume += data.getTrafficVolume(); + // 累加最大车流量 + largeTrafficVolume += data.getLargeTrafficVolume(); + // 计算分子部分 + numerator += data.getAverageSpeed() * data.getTrafficVolume(); + } + + // 使用第一个数据项的信息填充汇总统计对象的基本属性(设备ID、桩号、方向) + DcTrafficSectionData firstDcTrafficSectionData = dataCollection.iterator().next(); + // 设备id + aggregatedData.setDeviceId(firstDcTrafficSectionData.getDeviceId()); + // 桩号 + aggregatedData.setStakeMark(firstDcTrafficSectionData.getStakeMark()); + // 道路方向 + aggregatedData.setDirection(firstDcTrafficSectionData.getDirection()); + // 上报时间 + aggregatedData.setReportTime(firstDcTrafficSectionData.getReportTime()); + + // 计算平均车速并设置到汇总统计对象中 + if (trafficVolume != 0) { + aggregatedData.setAverageSpeed((int) Math.round(numerator / trafficVolume)); + } else { + // 若车流量为0,则默认设置平均车速为0 + aggregatedData.setAverageSpeed(0); + } + // 时段类型 + aggregatedData.setPeriodType(trafficDataPeriodType); + // 设置统计时间 + aggregatedData.setStatisticalDate(firstDcTrafficSectionData.getStatisticalDate(), trafficDataPeriodType); + // 车流量 + aggregatedData.setTrafficVolume(trafficVolume); + // 大型车车流量 + aggregatedData.setLargeTrafficVolume(largeTrafficVolume); + // 更新或插入操作 + aggregatedData.setUpdateTime(DateUtils.getNowDate()); + // 生成主键 + aggregatedData.generateUniqueId(); + + return aggregatedData; + } } diff --git a/zc-business/src/main/java/com/zc/business/utils/AlgorithmUtils.java b/zc-business/src/main/java/com/zc/business/utils/AlgorithmUtils.java new file mode 100644 index 00000000..bb47b8cc --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/utils/AlgorithmUtils.java @@ -0,0 +1,54 @@ +package com.zc.business.utils; + +import java.util.Comparator; +import java.util.List; + +/** + * @author xiepufeng + * AlgorithmUtils 类提供了一系列的算法工具方法。 + * 主要用于各种算法的实现和操作。 + */ +public class AlgorithmUtils { + + + /** + * 在已排序的列表中使用二分查找算法来查找指定目标元素的索引。 + * @param list 一个有序的列表,列表元素必须实现Comparable接口。 + * @param target 要在列表中查找的目标元素。 + * @return 如果目标元素在列表中找到,则返回其索引;如果未找到,则返回-1。 + * @param 列表和目标元素的类型,该类型必须实现Comparable接口以支持比较操作。 + */ + public static int binarySearch(List list, T target, Comparator comparator) { + + // 检查输入列表是否为null + if (list == null) { + throw new IllegalArgumentException("输入列表不能为空."); + } + + // 检查列表是否为空,如果是,直接返回-1 + if (list.isEmpty()) { + return -1; + } + + // 检查Comparator是否存在,如果没有则默认使用Comparable接口 + Comparator effectiveComparator = comparator != null ? comparator : (x, y) -> ((Comparable) x).compareTo(y); + + int low = 0; // 定义搜索范围的最低索引 + int high = list.size() - 1; // 定义搜索范围的最高索引 + + while (low <= high) { // 当搜索范围未缩小到零时继续循环 + int mid = low + (high - low) / 2; // 计算当前搜索范围的中间索引 + int cmp = effectiveComparator.compare(list.get(mid), target); // 比较中间元素和目标元素 + + if (cmp < 0) { // 如果中间元素小于目标元素,则目标元素可能在右侧 + low = mid + 1; + } else if (cmp > 0) { // 如果中间元素大于目标元素,则目标元素可能在左侧 + high = mid - 1; + } else { + return mid; // 如果中间元素等于目标元素,则找到目标,返回其索引 + } + } + + return -1; // 如果未找到目标元素,则返回-1 + } +} diff --git a/zc-business/src/main/java/com/zc/business/utils/PoiUtil.java b/zc-business/src/main/java/com/zc/business/utils/PoiUtil.java new file mode 100644 index 00000000..e799f2ef --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/utils/PoiUtil.java @@ -0,0 +1,369 @@ +package com.zc.business.utils; + +import com.aliyuncs.utils.IOUtils; +import com.google.common.base.Strings; +import org.apache.poi.openxml4j.opc.OPCPackage; +import org.apache.poi.ss.util.CellRangeAddress; +import org.apache.poi.ss.util.CellReference; +import org.apache.poi.xddf.usermodel.chart.XDDFChartData; +import org.apache.poi.xddf.usermodel.chart.XDDFDataSource; +import org.apache.poi.xddf.usermodel.chart.XDDFDataSourcesFactory; +import org.apache.poi.xddf.usermodel.chart.XDDFNumericalDataSource; +import org.apache.poi.xssf.usermodel.XSSFSheet; +import org.apache.poi.xwpf.usermodel.*; +import org.apache.xmlbeans.XmlOptions; +import org.openxmlformats.schemas.drawingml.x2006.chart.CTPlotArea; +import org.openxmlformats.schemas.wordprocessingml.x2006.main.*; +import org.springframework.util.StringUtils; + +import java.io.*; +import java.math.BigInteger; +import java.util.ArrayList; +import java.util.HashMap; +import java.util.List; +import java.util.Map; + +/** + * @author : LCheng + * @date : 2020-12-10 10:03 + * description : poi工具 + */ +public class PoiUtil { + + public static int headingCount1 = 1; + public static int headingCount2 = 1; + + /** + * 根据word模板导出 针对图表(柱状图,折线图,饼图等)的处理 + * + * @param docChart 图表对象 + * @param title 图表标题 + * @param seriesNames 系列名称数组 + * @return {@link XWPFChart} + * @author LCheng + * @date 2020/12/10 11:08 + */ + public static XWPFChart wordExportChar(XWPFChart docChart, String title, String[] seriesNames, XSSFSheet sheet) { + //获取图表数据对象 + XDDFChartData chartData = docChart.getChartSeries().get(0); + + //word图表均对应一个内置的excel,用于保存图表对应的数据 + //excel中 第一列第二行开始的数据为分类信息 + //CellRangeAddress(1, categories.size(), 0, 0) 四个参数依次为 起始行 截止行 起始列 截止列。 + //根据分类信息的范围创建分类信息的数据源 + XDDFDataSource catDataSource = XDDFDataSourcesFactory.fromStringCellRange(sheet, new CellRangeAddress(1,sheet.getLastRowNum(),0,0)); + //更新数据 + for (int i = 0; i < seriesNames.length; i++) { + //excel中各系列对应的数据的范围 + //根据数据的范围创建值的数据源 + XDDFNumericalDataSource valDataSource = XDDFDataSourcesFactory.fromNumericCellRange(sheet, new CellRangeAddress(1,sheet.getLastRowNum(),i+1,i+1)); + //获取图表系列的数据对象 + XDDFChartData.Series series = chartData.getSeries().get(i); + //替换系列数据对象中的分类和值 + series.replaceData(catDataSource, valDataSource); + //修改系列数据对象中的标题 + CellReference cellReference = docChart.setSheetTitle(seriesNames[i], 1); + series.setTitle(seriesNames[i], cellReference); + } + //更新图表数据对象 + docChart.plot(chartData); + //图表整体的标题 传空值则不替换标题 + if (!Strings.isNullOrEmpty(title)) { + docChart.setTitleText(title); + docChart.setTitleOverlay(false); + } + return docChart; + } + + /** + * 合并docx文件 + * @param srcDocxs 需要合并的目标docx文件 + * @param destDocx 合并后的docx输出文件 + */ + public static void mergeDoc(XWPFDocument srcDocxs, XWPFDocument destDocx) { + + + try { + + //获取目标文件的CTDocument1对象 + CTDocument1 ctDocument1 = srcDocxs.getDocument(); + //获取第一个目标文件的CTBody对象 + CTBody src1Body = ctDocument1.getBody(); + + + //获取目标文件中的图表 + List relations = srcDocxs.getCharts(); + //判断是否有图表,没有图表的话,追加到之前的目标文件后面 + if (relations.size() <= 0) { + CTBody src2Body = srcDocxs.getDocument().getBody(); + //获取目标文件中的图片 + List allPictures = srcDocxs.getAllPictures(); + // 记录图片合并前及合并后的ID + Map map = new HashMap(); + //遍历图片 + for (XWPFPictureData picture : allPictures) { + String before = srcDocxs.getRelationId(picture); + //将原文档中的图片加入到目标文档中 + String after = destDocx.addPictureData(picture.getData(), Document.PICTURE_TYPE_PNG); + map.put(before, after); + } + //将当前文件的内容追加到之前的目标文件中 + appendBody(src1Body, src2Body,map); + } + //遍历图表, + for (XWPFChart chart1 : relations) { + //是否是word中自带图表 + if (chart1 instanceof XWPFChart) { // 如果是图表元素 + XWPFChart chart = destDocx.createChart(5774310, 3076575); + CTPlotArea plotArea = chart1.getCTChart().getPlotArea(); + chart.getCTChart().setPlotArea(plotArea); + chart.getCTChart().setLegend(chart1.getCTChart().getLegend()); + } + } + //关闭流 + srcDocxs.close(); + + } catch (Exception e) { + e.printStackTrace(); + } + } + + + + /** + * 合并chart + * @param chart 需要合并的目标chart + * @param destDocx 合并后的docx输出文件 + */ + public static void mergeChart(XWPFChart chart, XWPFDocument destDocx) { + try { + + XWPFChart docxChart = destDocx.createChart(5774310, 3076575); + CTPlotArea plotArea = chart.getCTChart().getPlotArea(); + docxChart.getCTChart().setPlotArea(plotArea); + docxChart.getCTChart().setLegend(chart.getCTChart().getLegend()); + + } catch (Exception e) { + e.printStackTrace(); + } + } + + /** + * 插入换行符 + * @param destDocx 合并后的docx输出文件 + */ + public static void createLineBreak(XWPFDocument destDocx) { + try { + + XWPFParagraph paragraph = destDocx.createParagraph(); + XWPFRun run = paragraph.createRun(); + run.addBreak(); + + } catch (Exception e) { + e.printStackTrace(); + } + } + + + + /** + * 合并文档内容 + * + * @param src 目标文档 + * @param append 要合并的文档 + * @throws Exception + */ + private static void appendBody(CTBody src, CTBody append,Map map) throws Exception { + XmlOptions optionsOuter = new XmlOptions(); + optionsOuter.setSaveOuter(); + //获取目标文件的字符内容 + String srcString = src.xmlText(); + //获取目标文件字符的开头 + String prefix = srcString.substring(0, srcString.indexOf(">") + 1); + //获取目标文件字符的内容 + String mainPart = srcString.substring(srcString.indexOf(">") + 1, + srcString.lastIndexOf("<")); + //获取目标文件字符的结尾 + String sufix = srcString.substring(srcString.lastIndexOf("<")); + //获取需要追加的文件 + String appendString = append.xmlText(optionsOuter); + //获取需要追加的文件内容(除去头和尾) + String addPart = appendString.substring(appendString.indexOf(">") + 1, + appendString.lastIndexOf("<")); + if (map != null && !map.isEmpty()) { + //对xml字符串中图片ID进行替换 + for (Map.Entry set : map.entrySet()) { + addPart = addPart.replace(set.getKey(), set.getValue()); + } + } + //将获取到的文件内容合并成为新的CTBody + CTBody makeBody = CTBody.Factory.parse(prefix + mainPart + addPart + + sufix); + //将新的CTBody重新设置到目标文件中 + src.set(makeBody); + } + + public static XWPFParagraph createHeading(XWPFDocument doc, String title) { + //段落 + XWPFParagraph paragraph = doc.createParagraph(); + XWPFRun run = paragraph.createRun(); + run.setText(title); +// run.setColor("696969"); + run.setFontSize(18); + run.setBold(true);//标题加粗 + return paragraph; + } + + /** + * 创建标题1 + * + * @param doc + * @param title + */ + public static void createHeading1(XWPFDocument doc, String title) { + //段落 + XWPFParagraph paragraph = doc.createParagraph(); + XWPFRun run = paragraph.createRun(); + run.setText(title); +// run.setColor("696969"); + run.setFontSize(16); + run.setBold(true);//标题加粗 + paragraph.setStyle("Heading1"); + } + + /** + * 创建标题2 + * + * @param doc + * @param title + */ + public static void createHeading2(XWPFDocument doc, String title) { + XWPFParagraph paragraph = doc.createParagraph(); + XWPFRun run = paragraph.createRun(); + run.setText(title); + run.setFontSize(14); + run.setBold(true);//标题加粗 + paragraph.setStyle("Heading2"); + } + + public static void createTable(XWPFDocument doc) { + XWPFTable table = doc.createTable(3, 3); + //列宽自动分割 + CTTblWidth infoTableWidth = table.getCTTbl().addNewTblPr().addNewTblW(); + infoTableWidth.setType(STTblWidth.DXA); + infoTableWidth.setW(BigInteger.valueOf(9072)); + + setTableFonts(table.getRow(0).getCell(0), "编号"); + setTableFonts(table.getRow(0).getCell(1), "问题"); + setTableFonts(table.getRow(0).getCell(2), "应答"); + setTableFonts(table.getRow(1).getCell(0), "1"); + setTableFonts(table.getRow(1).getCell(1), "陈述日期"); + setTableFonts(table.getRow(1).getCell(2), "2017年02月17日"); + setTableFonts(table.getRow(2).getCell(0), "2"); + setTableFonts(table.getRow(2).getCell(1), "PICS序列号"); + setTableFonts(table.getRow(2).getCell(2), "121313132131"); + + } + + // word跨列合并单元格 + public static void mergeCellsHorizontal(XWPFTable table, int row, int fromCell, int toCell) { + for (int cellIndex = fromCell; cellIndex <= toCell; cellIndex++) { + XWPFTableCell cell = table.getRow(row).getCell(cellIndex); + if (cellIndex == fromCell) { + // The first merged cell is set with RESTART merge value + cell.getCTTc().addNewTcPr().addNewHMerge().setVal(STMerge.RESTART); + } else { + // Cells which join (merge) the first one, are set with CONTINUE + cell.getCTTc().addNewTcPr().addNewHMerge().setVal(STMerge.CONTINUE); + } + } + } + + // word跨行并单元格 + public static void mergeCellsVertically(XWPFTable table, int col, int fromRow, int toRow) { + for (int rowIndex = fromRow; rowIndex <= toRow; rowIndex++) { + XWPFTableCell cell = table.getRow(rowIndex).getCell(col); + if (rowIndex == fromRow) { + // The first merged cell is set with RESTART merge value + cell.getCTTc().addNewTcPr().addNewVMerge().setVal(STMerge.RESTART); + } else { + // Cells which join (merge) the first one, are set with CONTINUE + cell.getCTTc().addNewTcPr().addNewVMerge().setVal(STMerge.CONTINUE); + } + } + } + + /** + * 设置表格中字体 + * + * @param cell + * @param cellText + */ + public static void setTableFonts(XWPFTableCell cell, String cellText) { + CTP ctp = CTP.Factory.newInstance(); + XWPFParagraph p = new XWPFParagraph(ctp, cell); + p.setAlignment(ParagraphAlignment.CENTER); + XWPFRun run = p.createRun(); + run.setFontSize(8); + run.setText(cellText); + CTRPr rpr = run.getCTR().isSetRPr() ? run.getCTR().getRPr() : run.getCTR().addNewRPr(); + CTFonts fonts = rpr.isSetRFonts() ? rpr.getRFonts() : rpr.addNewRFonts(); + fonts.setAscii("仿宋"); + fonts.setEastAsia("仿宋"); + fonts.setHAnsi("仿宋"); + cell.setParagraph(p); + } + + /** + * 添加描述信息 + * + * @param doc + * @param description + */ + public static void addDescription(XWPFDocument doc, String description) { + if (StringUtils.isEmpty(description)) { + return; + } + XWPFParagraph title = doc.createParagraph(); + XWPFRun run = title.createRun(); + run.setText(description); + run.setBold(true); + title.setAlignment(ParagraphAlignment.CENTER); + } + + /** + * 创建目录 + * 创建并插入带超链接的目录 + * @param document + */ + public static void insertTOC2(XWPFDocument document) { + // 定义 TOC 字段属性 + CTSimpleField tocField = CTSimpleField.Factory.newInstance(); + tocField.setInstr("TOC \\h \\z \\t \"Heading1,Heading2\""); // 包含 Heading1 和 Heading2 样式的目录 + + // 创建包含 TOC 字段的段落 + XWPFParagraph tocPara = document.createParagraph(); + tocPara.getCTP().addNewFldSimple().set(tocField); + + // 更新文档字段以计算目录 + document.enforceUpdateFields(); + } + + /** + * 创建目录 + * 创建并插入带超链接的目录 + * @param document + */ + public static void insertTOC(XWPFDocument document) { + // 创建目录所在的段落 + XWPFParagraph tocPara = document.createParagraph(); + + + // 添加 TOC 域代码 + String tocFieldCode = "TOC \\o \"1-3\" \\h \\z \\u"; + CTSimpleField tocField = tocPara.getCTP().addNewFldSimple(); + tocField.setInstr(tocFieldCode); + tocField.setDirty(STOnOff.TRUE); + } +} + diff --git a/zc-business/src/main/java/com/zc/business/utils/StakeMarkUtils.java b/zc-business/src/main/java/com/zc/business/utils/StakeMarkUtils.java new file mode 100644 index 00000000..7946b272 --- /dev/null +++ b/zc-business/src/main/java/com/zc/business/utils/StakeMarkUtils.java @@ -0,0 +1,37 @@ +package com.zc.business.utils; +/** + * StakeMarkUtils 桩号工具类 + * @author xiepufeng + */ +public class StakeMarkUtils { + + /** + * 将桩号格式的字符串转换为总米数。 + * 桩号格式字符串的样式可以是 "Xkm+Ym",其中 X 表示公里数,Y 表示米数。 + * 公里数和米数之间使用 '+' 连接,且公里数和米数的单位字符 'k' 和 '+' 可以是任意大小写。 + * + * @param stakeMark 桩号格式的字符串,例如 "1km+200m"。 + * @return 如果输入字符串为 null,则返回 null;否则返回计算得到的总米数。 + */ + public static Integer stakeMarkToInt(String stakeMark) { + if (stakeMark == null) { + return null; + } + + // 使用正则表达式分割字符串,以不区分大小写的 'k' 和 '+' 为分隔符 + String[] parts = stakeMark.split("(?i)k|\\+"); + + // 提取公里数和米数字符串 + String kmStr = parts[1].trim(); + int km = Integer.parseInt(kmStr); // 将公里数字符串转换为整数 + int m = 0; + if (parts.length == 3) { + // 如果存在米数,则提取并转换为整数 + String mStr = parts[2].trim(); + m = Integer.parseInt(mStr); + } + // 计算并返回总米数 + return km * 1000 + m; + } +} + diff --git a/zc-business/src/main/resources/mapper/business/DcTrafficIncidentsMapper.xml b/zc-business/src/main/resources/mapper/business/DcTrafficIncidentsMapper.xml index 46746935..ce150537 100644 --- a/zc-business/src/main/resources/mapper/business/DcTrafficIncidentsMapper.xml +++ b/zc-business/src/main/resources/mapper/business/DcTrafficIncidentsMapper.xml @@ -398,4 +398,233 @@ group by event_subclass) t3 on t1.eventSubclass = t3.event_subclass + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/zc-business/src/main/resources/wordTemplate/chartTemplate.docx b/zc-business/src/main/resources/wordTemplate/chartTemplate.docx new file mode 100644 index 00000000..2f9a8f65 Binary files /dev/null and b/zc-business/src/main/resources/wordTemplate/chartTemplate.docx differ diff --git a/zc-business/src/main/resources/wordTemplate/chartTemplate2.docx b/zc-business/src/main/resources/wordTemplate/chartTemplate2.docx new file mode 100644 index 00000000..c0a398ea Binary files /dev/null and b/zc-business/src/main/resources/wordTemplate/chartTemplate2.docx differ diff --git a/zc-business/src/main/resources/wordTemplate/wordTemplate.docx b/zc-business/src/main/resources/wordTemplate/wordTemplate.docx new file mode 100644 index 00000000..5c48a30b Binary files /dev/null and b/zc-business/src/main/resources/wordTemplate/wordTemplate.docx differ